首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plants belonging to the genus Veratrum have been used throughout history for their medicinal properties. During the nineteenth and twentieth centuries, phytochemical investigations revealed a host of steroidal alkaloids in Veratrum species, some of which are potent bioactives. This review discusses Veratrum species that grow in North America with a focus on the medicinal history of these plants and the steroidal alkaloids they contain. While significant reviews have been devoted to singularly describing the plant species within the genus Veratrum (botany), the staggering breadth of alkaloids isolated from these and related plants (phytochemistry), and the intricacies of how the various alkaloids act on their biological targets (physiology and biochemistry), this review will straddle the margins of the aforementioned disciplines in an attempt to provide a unified, coherent picture of the Veratrum plants of North America and the medicinal uses of their bioactive steroidal alkaloids.  相似文献   

3.
A review summarizing our results in a research program directed at the syntheses of alkaloids within the Jerveratrum and Ceveratrum groups of Veratrum alkaloids is provided. The overall synthetic strategy involves the syntheses of appropriate C-nor-D-homo steroid intermediates and, then, reaction of the latter with the required heterocyclic units to afford the important synthetic intermediates for final elaboration to the natural systems. The discussion illustrates the application of this strategy to the synthesis of verarine, 5α,6-dihydroveratramine, and the hexacyclic base verticine.  相似文献   

4.
The wide distribution of Valeriana officinalis as a herbal remedy as well as the considerably higher concentration of putative mutagenic valepotriate metabolites in other drug-delivering valerian species like Valeriana procera Kunth and Valeriana jatamansi Jones ex Roxb. illustrate the necessity of secure authentication of roots of Valeriana officinalis s.l., especially as the morphologically similar roots of the acutely toxic Veratrum album can be mistaken for those of Valeriana officinalis. We developed two DNA-based systems, a multiplex amplification refractory mutation system (MARMS), and a high-resolution melting curve analysis (HRMA) assay, both based on a sequence mutation within the atpB-rbcL region. With both methods, identification of Valeriana officinalis s.l. was possible. With the HRMA, the characteristic melting curve of 33 samples of Valeriana officinalis s.l. and of two commercial samples of Valerianae radix was distinct from the melting curves of all other Valeriana species (60 accessions), and from the closely related genera Centranthus and Valerianella. Since adulteration of Valeriana with toxic Veratrum species was reported previously, Veratrum primers were included in a multiplex PCR-HRM analysis. This system allowed the detection of a Veratrum admixture down to the level of 0.01 %. Although the advantages, in terms of sensitivity, specificity and practicality of the HRM for analysis of degraded plant material were superior to the MARMS assay, both methods are suitable for routine analysis. The results demonstrated the general ability of HRMA to detect specific (toxic) adulterations in drugs in a semiquantitative way.  相似文献   

5.
Veratrum plants accumulate verazine as the major alkaloid in the rhizome during the dormant stage 4 months after cold treatment. The quantitative c  相似文献   

6.
Erich Heftmann 《Phytochemistry》1983,22(9):1843-1860
The biogenetic pathways leading to the characteristic steroids of the Solanaceae are reviewed. The experimental data from feeding experiments on members of the Solanaceae are described and, where necessary, pertinent experiments on other plants, such as Veratrum spp. are mentioned. The review covers the simple sterols, the steroidal sapogenins and the steroidal alkaloids found in these plants, and their metabolism as well as biosynthesis are considered.  相似文献   

7.
Veratrum (Melanthiaceae) comprises ca. 27 species with highly variable morphology. This study aims to construct the molecular phylogeny of this genus to infer its floral evolution and historical biogeography, which have not been examined in detail before. Maximum parsimony, maximum likelihood, and Bayesian analyses were performed on the separate and combined ITS, trnL-F, and atpB-rbcL sequences to reconstruct the phylogenetic tree of the genus. All Veratrum taxa formed a monophyletic group, within which two distinct clades were distinguished: species with white-to-green perianth formed one highly supported clade, and the species with black-purple perianth constituted another highly supported clade. Phylogenetic inference on flower color evolution suggested that white-to-green perianth was a plesiomorphic state and black-purple perianth was apomorphic for Veratrum. When species distribution areas were traced as a multi-state character, parsimonious optimization inferred that Veratrum possibly originated in East Asia. Our study confirmed previous phylogenetic and taxonomic suggestions on this genus and provided a typical example of plant radiation across the Northern Hemisphere.  相似文献   

8.
The vacuolar protein sorting 4 (Vps4) protein is essential for the multivesicular body (MVB) pathway, virus budding process and cytokinesis. Vps4 has been identified and characterized from many species, but not from silkworm Bombyx mori. In this study, we firstly identified and cloned the silkworm homologous gene for VPS4, expressed it in Escherichia coli, purified and characterized the protein designated as BmVps4. The BmVps4 cDNA contains an open reading frame of 1,314?bp, and encodes a protein of 438 amino acid residues. BmVps4 is of high sequence-similarity to Vps4 proteins from other species. The recombinant BmVps4 shows ATPase activity, which can be stimulated by Mg2+ and inhibited by dominant mutations. Together, our data suggest BmVps4 is the genuine silkworm homologue of Vps4. To our knowledge, this is the first-time characterization of any silkworm MVB proteins. This study will facilitate further investigation of silkworm MVB pathway and its possible roles in the infection and budding of B. mori nuclear polyhedrosis virus (BmNPV), which is one of the most common and severe pathogens for silkworms. The cloned BmVps4 sequence is deposited in GenBank (Accession number GQ995504).  相似文献   

9.
Only limited information is available concerning the effects of low-shear modeled microgravity (LSMMG) on cell function and morphology. We examined the behavior of Saccharomyces cerevisiae grown in a high-aspect-ratio vessel, which simulates the low-shear and microgravity conditions encountered in spaceflight. With the exception of a shortened lag phase (90 min less than controls; P < 0.05), yeast cells grown under LSMMG conditions did not differ in growth rate, size, shape, or viability from the controls but did differ in the establishment of polarity as exhibited by aberrant (random) budding compared to the usual bipolar pattern of controls. The aberrant budding was accompanied by an increased tendency of cells to clump, as indicated by aggregates containing five or more cells. We also found significant changes (greater than or equal to twofold) in the expression of genes associated with the establishment of polarity (BUD5), bipolar budding (RAX1, RAX2, and BUD25), and cell separation (DSE1, DSE2, and EGT2). Thus, low-shear environments may significantly alter yeast gene expression and phenotype as well as evolutionary conserved cellular functions such as polarization. The results provide a paradigm for understanding polarity-dependent cell responses to microgravity ranging from pathogenesis in fungi to the immune response in mammals.  相似文献   

10.

Background

Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding.

Results

We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-μCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens.

Conclusion

Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM).  相似文献   

11.
Ustilago maydis, a pathogen of maize, is a useful model for the analysis of mating, pathogenicity, and the morphological transition between budding and filamentous growth in fungi. As in other fungi, these processes are regulated by conserved signaling mechanisms, including the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and at least one mitogen-activated protein kinase (MAP kinase) pathway. A current challenge is to identify additional factors that lie downstream of the cAMP pathway and that influence morphogenesis in U. maydis. In this study, we identified suppressor mutations that restored budding growth to a constitutively filamentous mutant with a defect in the gene encoding a catalytic subunit of PKA. Complementation of one suppressor mutation unexpectedly identified the ras2 gene, which is predicted to encode a member of the well-conserved ras family of small GTP-binding proteins. Deletion of the ras2 gene in haploid cells altered cell morphology, eliminated pathogenicity on maize seedlings, and revealed a role in the production of aerial hyphae during mating. We also used an activated ras2 allele to demonstrate that Ras2 promotes pseudohyphal growth via a MAP kinase cascade involving the MAP kinase kinase Fuz7 and the MAP kinase Ubc3. Overall, our results reveal an additional level of crosstalk between the cAMP signaling pathway and a MAP kinase pathway influenced by Ras2.  相似文献   

12.
Genomic screens of doxorubicin toxicity in S. cerevisiae have identified numerous mutants in amino acid and carbon metabolism which express increased doxorubicin sensitivity. This work examines the effect of amino acid metabolism on doxorubicin toxicity. S. cerevisiae were treated with doxorubicin in combination with a variety of amino acid supplements. Strains of S. cerevisiae with mutations in pathways utilizing aspartate and other metabolites were examined for sensitivity to doxorubicin. S. cerevisiae cultures exposed to doxorubicin in minimal media showed significantly more toxicity than cultures exposed in rich media. Supplementing minimal media with aspartate, glutamate or alanine reduced doxorubicin toxicity. Cell cycle response was assessed by examining the budding pattern of treated cells. Cultures exposed to doxorubicin in minimal media arrested growth with no apparent cell cycle progression. Aspartate supplementation allowed cultures exposed to doxorubicin in minimal media to arrest after one division with a budding pattern and survival comparable to cultures exposed in rich media. Aspartate provides less protection from doxorubicin in cells mutant in either mitochondrial citrate synthase (CIT1) or NADH oxidase (NDI1), suggesting aspartate reduces doxorubicin toxicity by facilitating mitochondrial function. These data suggest glycolysis becomes less active and mitochondrial respiration more active following doxorubicin exposure.  相似文献   

13.
ABSTRACT

Floral anatomy and pollen morphology of the two European species of Veratrum (V. nigrum and V. album subsp. lobelianum) from Italy are described in the context of the systematics of the genus and tribe Melanthieae (Melanthiaceae sensu stricto). Septal nectaries are absent, as in other Liliales. Most characters in Veratrum are typical of Melanthieae: e.g. semi-inferior ovaries, fused carpellary bundles and operculate pollen.  相似文献   

14.
15.
The Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) GP64 envelope glycoprotein is essential for virus entry and plays an important role in virion budding. An AcMNPV construct that contains a deletion of the gp64 gene is unable to propagate infection from cell to cell, and this defect results from both a severe reduction in the production of budded virions and the absence of GP64 on virions. In the current study, we examined GP64 proteins containing N- and C-terminal truncations of the ectodomain and identified a minimal construct capable of targeting the truncated GP64 to budded virions. The minimal budding and targeting construct of GP64 contained 38 amino acids from the mature N terminus of the GP64 ectodomain and 52 amino acids from the C terminus of GP64. Because the vesicular stomatitis virus (VSV) G protein was previously found to rescue infectivity of a gp64null AcMNPV, we also examined a small C-terminal construct of the VSV G protein. We found that a construct containing 91 amino acids from the C terminus of VSV G (termed G-stem) was capable of rescuing AcMNPV gp64null virion budding to wild-type (wt) or nearly wt levels. We also examined the display of chimeric proteins on the gp64null AcMNPV virion. By generating viruses that expressed chimeric influenza virus hemagglutinin (HA) proteins containing the GP64 targeting domain and coinfecting those viruses with a virus expressing the G-stem construct, we demonstrated enhanced display of the HA protein on gp64null AcMNPV budded virions. The combined use of gp64null virions, VSV G-stem-enhanced budding, and GP64 domains for targeting heterologous proteins to virions should be valuable for biotechnological applications ranging from targeted transduction of mammalian cells to vaccine production.  相似文献   

16.
《Mycoscience》2014,55(1):5-11
Puccinia metanarthecii and P. pachycephala differed in their heteroecious life cycle. The former rust fungus formed spermogonial/aecial stages on Ixeris dentata and uredinial/telial stages on Metanarthecium luteo-viride or Aletris foliata. The latter formed spermogonial/aecial stages on Ligularia hodgsonii and uredinial/telial stages on Veratrum maackii var. longibracteatum and V. maackii var. parviflorum. Puccinia pachycephala and P. metanarthecii can also be differentiated by aeciospore and teliospore morphology.  相似文献   

17.
PCNA plays critical roles in DNA replication and various DNA repair pathways including DNA damage tolerance (DDT). In budding yeast Saccharomyces cerevisiae, DDT (aka DNA postreplication repair, PRR) is achieved by sequential ubiquitination of PCNA encoded by POL30. Our previous studies revealed that two Arabidopsis PCNA genes were able to complement the essential function of POL30 in budding yeast, but failed to rescue the PRR activity. Here we hypothesize that a certain amino acid variation(s) is responsible for the difference, and identified K196 as a critical residue for the PRR activity. It was found that the pol30-K196V mutation abolishes Rad18 interaction and PRR activity, whereas nearby amino acid substitutions can partially restore Rad18 interaction and PRR activity. Together with the Pol30-Ub fusion data, we believe that we have identified a putative Rad18-binding pocket in Pol30 that is required for PCNA monoubiquitination and PRR.  相似文献   

18.
Positive interactions among plants have been demonstrated in many communities around the world, and appear to play important roles in maintaining species coexistence, productivity, and species diversity. However, the potential for positive interactions to conserve biological diversity in ecosystems that are disturbed by humans is poorly understood and often overlooked. One of the most important positive effects one plant can have on another is protection from herbivory. By associating with an unpalatable neighbor, a tasty species may avoid being eaten and increase in size and reproductive fitness. We examined the role of two highly unpalatable plants, Cirsiumobvalatum and Veratrum lobelianum, in subalpine meadow plant communities of the central Caucasus Mountains in the Republic of Georgia, where intense livestock grazing has occurred for over two thousand years. These two species are avoided by livestock because of spines and toxicity, respectively, and have increased dramatically in abundance recently due to seasonal trans‐Caucasus migrations of vast herds of domestic sheep during the Soviet era. The Gudauri region, bisected by the Russian‐Georgian Military Road, was a focal point of these migrations, and there we found that plant communities associated with Cirsium and Veratrum were very different in composition than open meadows. Forty‐four percent (15/34) of all species at our site were found at only “trace” (<1.0%) cover values in the open meadow, but at significantly higher covers under Cirsium or Veratrum. Of the 38 species that were reproducing sexually at our site, eight were found only under the unpalatable invaders. Communities associated with Cirsium and Veratrum had 78–128% more species in flower or fruit than open meadow communities, respectively, than open meadow sites. Furthermore, community composition and reproductive output differed substantially between Cirsium and Veratrum, indicating some degree of species‐specificity in their effects. These results indicate that unpalatable plants, which are generally indicators of unhealthy rangelands, have the potential to preserve plant diversity in overgrazed plant communities.  相似文献   

19.
The dimorphic fungus Ustilago maydis switches from budding to hyphal growth on the plant surface. In response to hydrophobicity and hydroxy fatty acids, U. maydis develops infection structures called appressoria. Here, we report that, unlike in Saccharomyces cerevisiae and other fungi where Sho1 (synthetic high osmolarity sensitive) and Msb2 (multicopy suppressor of a budding defect) regulate stress responses and pseudohyphal growth, Sho1 and Msb2-like proteins play a key role during appressorium differentiation in U. maydis. Sho1 was identified through a two-hybrid screen as an interaction partner of the mitogen-activated protein (MAP) kinase Kpp6. Epistasis analysis revealed that sho1 and msb2 act upstream of the MAP kinases kpp2 and kpp6. Furthermore, Sho1 was shown to destabilize Kpp6 through direct interaction with the unique N-terminal domain in Kpp6, indicating a role of Sho1 in fine-tuning Kpp6 activity. Morphological differentiation in response to a hydrophobic surface was strongly attenuated in sho1 msb2 mutants, while hydroxy fatty acid–induced differentiation was unaffected. These data suggest that Sho1 and the transmembrane mucin Msb2 are involved in plant surface sensing in U. maydis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号