首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In ants, mating and colony founding are critical steps in the life of ant queens. Outside of their nests, young queens are exposed to intense predation. Therefore, they are expected to have evolved behavior to accurately and quickly locate a nesting place. However, data on the early life history of female reproductives are still lacking. Leptothorax gredleri is a suitable model organism to study the behavior of young queens. Reproductives can be reared under artificial conditions and readily mate in the laboratory. After mating, L. gredleri queens have the options to found solitarily, seek adoption into another colony, or return into their natal nest. In this study, we investigated the decision-making processes of female sexuals before and after mating. In particular, we tested whether female sexuals use chemical cues to find their way back to the nest, studied if they prefer their own nest over other nesting sites and followed the adoption dynamics of mated queens over 8 weeks (plus hibernation and spring). We showed that female sexuals and freshly mated queens spent more time on substrate previously used by workers from their own colony and from another colony than on a blank substrate. This discriminatory capability of queens appears to be lost in old, reproductive queens. Nest choice experiments showed that female sexuals and freshly mated queens can distinguish their own nest while old mated queens’ do not. When reintroduced in their maternal colony, young queens were readily adopted, but a few weeks later aggression against young queens led to their emigration from the maternal nest and eventually also death.  相似文献   

2.
Summary Female sexuals of the ant Leptothorax gredleri attract males by sexual calling. In an experimental set-up allowing for competition among males, both female and male sexuals copulated with up to four partners, with the median being one mate in both sexes. Neither male nor female sexuals invariably mated with the first partner they encountered, but we could not find any morphological difference between sexuals that succeeded in mating multiply and those that copulated only once. Males did not aggressively compete for access to the female sexuals. According to microsatellite genotyping, workers produced by multiply mated queens were all offspring of a single father, i.e. queens appear to use sperm from a single mate to fertilize their eggs. Population genetic studies revealed a strong population subdivision, suggesting that both male and female sexuals mate in the vicinity of their maternal nests and that gene flow is strongly restricted even between forest patches isolated only by a few meters of grassland.  相似文献   

3.
A virgin ant queen has only one opportunity in her lifetime to realize her reproductive fitness when she leaves her nest for a mating flight. After successful mating she sheds her wings, excavates a nest and starts laying eggs to initiate her own colony. Here we report the results of our study on two related species of Camponotus ants - day active Camponotus paria and night active Camponotus compressus - aimed at investigating (i) if there exist inter-species differences in the activity and phototactic behaviors of males and queens, (ii) whether these behaviors in the queen change after mating, and (iii) whether the activity rhythm of queens changes with age. We find that while activity profiles differ between C. paria and C. compressus virgin males and queens, such differences in queens disappear after mating. Once mated, the activity rhythm of queens shows little change with age; the rhythm in virgin queens, on the other hand, changes considerably. As virgins, C. paria queens are positively phototactic, while C. compressus queens are negatively phototactic. After mating, C. paria queens become less phototactic, particularly during the subjective night, while C. compressus queens remain negatively phototactic. These results indicate that there are considerable differences in the activity and phototactic behaviors of virgin queens of the two related species of Camponotus ants. Most of these differences disappear after mating, which suggests that these behaviors may have evolved primarily for the proper execution of pre-mating events.  相似文献   

4.
While sexual communication is often characterized by attempted manipulation, both sexes agree about females reliably signalling their receptivity. Female sexuals of the ant Leptothorax gredleri quickly became unattractive to males after their first copulation. This loss of attractiveness coincided with almost immediate changes in their cuticular hydrocarbon (CHC) profiles. Already 30 min after mating, the CHC profiles of female sexuals had significantly lower relative amounts of branched alkanes and higher amounts of linear alkanes than those of unmated and freshly mated female sexuals. Discriminant analysis did not distinguish between the profiles of freshly mated and unmated female sexuals, suggesting that the extremely rapid modification of CHC profiles is not caused by males marking females with anti-aphrodisiac CHCs. Instead, the new profile is produced by the female sexuals themselves. In addition to making them unattractive to males, this change may also help mated female sexuals when seeking adoption into established colonies.  相似文献   

5.
Cremer S  Schrempf A  Heinze J 《PloS one》2011,6(3):e17323
Context-dependent adjustment of mating tactics can drastically increase the mating success of behaviourally flexible animals. We used the ant Cardiocondyla obscurior as a model system to study adaptive adjustment of male mating tactics. This species shows a male diphenism of wingless fighter males and peaceful winged males. Whereas the wingless males stay and exclusively mate in the maternal colony, the mating behaviour of winged males is plastic. They copulate with female sexuals in their natal nests early in life but later disperse in search for sexuals outside. In this study, we observed the nest-leaving behaviour of winged males under different conditions and found that they adaptively adjust the timing of their dispersal to the availability of mating partners, as well as the presence, and even the type of competitors in their natal nests. In colonies with virgin female queens winged males stayed longest when they were the only male in the nest. They left earlier when mating partners were not available or when other males were present. In the presence of wingless, locally mating fighter males, winged males dispersed earlier than in the presence of docile, winged competitors. This suggests that C. obscurior males are capable of estimating their local breeding chances and adaptively adjust their dispersal behaviour in both an opportunistic and a risk-sensitive way, thus showing hitherto unknown behavioural plasticity in social insect males.  相似文献   

6.
Alarm pheromones of social insects are best known for their role in the defence and maintenance of colony integrity. Previous studies with the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) demonstrate that the mandibular glands of workers (sterile females) and male and female sexuals produce an alarm pheromone, 2‐ethyl‐3,6‐dimethylpyrazine. The function of alarm pheromones in worker ants is well understood and divergent from the function of these compounds in the winged sexual forms. The present study quantifies the amount of pyrazine in the mandibular glands from male and female alate sexuals, as well as queens. Pyrazine production in female alates starts in the late pupal stage and increases until they reach mating flight‐ready maturity; however, after mating flight participation, the pyrazine level declines by >50%. Interestingly, mature male alates lose >85% of their mandibular gland pyrazine during mating flight activity. The results of the present study indicate that male and female sexuals use mandibular gland secretions for mating flight initiation and during mating flights. Furthermore, the ontogeny of mandibular gland products (pyrazine as the marker) from newly‐mated queens to mature colony queens shows a more than two‐fold increase in the amount of pyrazine by 6 months after mating. However, this is followed by a decline to trace amounts in mature colony queens (>2 years old), suggesting a function for mandibular gland products during colony development. Multifunctional use of social insect pheromones is well documented and data are reported in the present study suggesting new roles for mandibular gland products in fire ants.  相似文献   

7.
Arriving earlier in the breeding area than his rivals may be beneficial for a male when females mate only once or during a short time span. The timing of a male's entrance is usually determined by the male himself, e.g., through returning early from his winter quarters or through accelerated larval development . Here, we document a surprisingly simple way of "first come, first served" in a species with local mate competition. In multiqueen colonies of a Cardiocondyla ant, mother queens make sure that their own sons are the first to monopolize mating with a large harem of female sexuals by producing extremely long-lived males early in colony life. Whereas queens in newly founded single-queen colonies started to produce male and female sexuals only several weeks after the eclosion of their first worker offspring, queens in multiqueen colonies precociously reared sons long before the first female sexuals and even before the emergence of their first workers. These early males killed all later emerging males in the nest and mated with all female sexuals subsequently produced. Our data document that the patterns of growth and productivity of insect colonies are surprisingly flexible and can be turned upside down under appropriate selection pressures.  相似文献   

8.
Workers of the ant Cardiocondyla elegans drop female sexuals into the nest entrance of other colonies to promote outbreeding with unrelated, wingless males. Corroborating the results from previous years, we document that carrier and carried female sexuals are typically related and that the transfer initially occurs mostly from their joint natal colonies to unrelated colonies. Female sexuals mate multiply with up to seven genetically distinguishable males. Contrary to our expectation, the colony growth rate of multiple‐mated and outbred female sexuals was lower than that of inbred or single‐mated females, leading to the question of why female sexuals mate multiply at all. Despite the obvious costs, multiple mating might be a way for female sexuals to “pay rent” for hibernation in an alien nest. We argue that in addition to evade inbreeding depression from regular sibling mating over many generations, assisted dispersal might also be a strategy for minimizing the risk of losing all reproductive investment when nests are flooded in winter.  相似文献   

9.
The acceptance of new queens in ant colonies has profound effects on colony kin structure and inclusive fitness of workers. Therefore, it is important to study the recognition and discrimination behaviour of workers towards reproductive individuals entering established colonies. We examined the acceptance rate of queens in populations of the highly polygynous ant F. paralugubris, where the genetic differentiation among nests and discrimination ability among workers suggest that workers might reject foreign queens. We experimentally introduced young queens in their natal nest and in foreign nests. Surprisingly, the survival rate of mated queens did not differ significantly when introduced in a foreign male-producing nest, a foreign female-producing nest, or the natal nest. Moreover, the survival of virgin queens in their natal nest was twice the one of mated queens, suggesting that mating status plays an important role for acceptance. The results indicate that other factors than queen discrimination by workers are implicated in the limited longdistance gene flow between nests in these populations. Received 8 April 2008; revised 16 June 2008; accepted 1 July 2008.  相似文献   

10.
Colonies of the ant, Leptothorax (s. str.) gredleri may contain several inseminated female reproductives of which typically only one is laying eggs. Observations suggest that “functional monogyny” is caused by aggressive interactions among nestmate queens. Only the most dominant queen reproduces. Subordinate queens either leave the colony to found their own nests solitarily or by budding, or stay in the nest without reproducing, but may eventually replace the dominant queen. The interrelations of life history of L. gredleri, population structure and habitat characteristics are examined.  相似文献   

11.
Water-loss rates increase after mating in queens of the harvester ant Pogonomyrmex barbatus (Formicidae: Myrmicinae), then increase again after the mated queens excavate an incipient nest. We determined the mechanistic basis for these increased water-loss rates by examining cuticular permeability, respiratory water loss, metabolic rates, and cuticular hydrocarbons for queens at three stages in the mating sequence: unmated alate queens, newly mated dealate queens, and mated queens excavated from their incipient nest. Both total water loss and cuticular transpiration increased significantly following mating, with cuticular transpiration accounting for 97% of the increased water loss. In contrast, metabolic rate and respiratory water loss were unaffected by mating stage. The total quantity of cuticular hydrocarbons did not vary by mating stage. However, relative amounts of four of the most abundant cuticular hydrocarbons did vary by mating stage, as did quantities of n-alkanes and methylalkanes. The general pattern was that percent composition of n-alkanes decreased through the mating sequence, while percent composition of methylalkanes increased over the same sequence. We discuss three mechanisms that might cause these post-mating increases in cuticular permeability. Our data support the hypothesis that part of this increase results from soil particles abrading the cuticle during the process of nest excavation.  相似文献   

12.
The North American seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima displays a dimorphism that consists of winged (alate) and wingless (intermorph) queens; both types of queens are fully reproductive. Microsatellite allele frequencies and a mitochondrial phylogeny demonstrate (1) alate and intermorph queens represent an intraspecific wing polymorphism, and (2) an absence of assortative mating and inbreeding by males. Surveys at our field site in southcentral Arizona, USA, demonstrated that only one type of queen (intermorph or dealate) occurred in each colony, including those excavated during the season in which reproductive sexuals were present. Colony structure appeared to vary by queen type as most intermorph colonies contained multiple mated queens. Alternatively, dealate queen colonies rarely contained a mated queen. Our inability to find mated dealate queens in these colonies probably resulted from difficulty in excavating the entire colony and reproductive queen, especially given that these colonies were only excavated over one day. A morphometric analysis demonstrated that intermorph queens are intermediate in size to that of workers and alate queens, but that intermorph queens retain all of the specialized anatomical features of alate queens (except for wings). Some colonies had queens that foraged and performed nest maintenance activities, and these queens sometimes accounted for a significant portion of colony foraging trips. Dissections revealed that these queens were uninseminated; some of these queens produced males in the laboratory. Received 24 October 2006; revised 1 December 2006; accepted 8 December 2006.  相似文献   

13.
Most disturbed habitats in the tropics and subtropics harbor numerous species of invasive ants, and occasionally the same species has been introduced repeatedly from multiple geographical sources. We examined how experimental crossbreeding between sexuals from different populations affects the fitness of queens of the tramp ant Cardiocondyla itsukii, which is widely distributed in Asia and the Pacific Islands. Eggs laid by queens that mated with nestmate males had a higher hatchi ng rate than eggs laid by queens mated to males from neighboring (Hawaii x Kauai) or distant introduced populations (Hawaii/Kauai x Okinawa). Furthermore, inbreeding queens had a Ion ger lifespan and produced a less female-biased offspring sex ratio than queens from allopatric mating. This suggests that the genetic divergence between different source populations may already be so large that in case of multiple invasions eventual crossbreeding might negatively affect the fitness of tramp ants.  相似文献   

14.
Abstract Dopamine has been suggested to be involved in physiological and/or behavioural changes triggered by mating in European honeybee (Apis mellifera) queens but its specific role remains unclear. In the present study, the amounts of dopamine (DA) and its metabolite, N‐acetyldopamine (NADA) are measured, in queens of various ages to clarify the association with locomotor activity. The effects of DA receptor agonist/antagonist drugs on locomotor activity are further investigated. Brain levels of DA and NADA are relatively constant during the period before mating when locomotor activity reportedly increases with age but decreases in 1‐year‐old laying queens with low locomotor activity. Reduced DA and NADA levels are also found in haemolymph of 1–3‐month‐old laying queens. When a DA receptor agonist or antagonist is injected into 6‐day‐old virgin queens, locomotor activity levels increase significantly with 2‐amino‐6,7‐dihydroxy‐1,2,3,4‐tetrahydronaphthalene (agonist), and decreased with cis(Z)‐flupenthixol (antagonist). These results suggest that DA systems are involved in the motor control of honeybee queens, and that the decline in DA levels reduces locomotor activity after mating but increased locomotor activity before mating may be independent of DA levels.  相似文献   

15.
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum using up to six microsatellite loci. We estimated mating frequency by genotyping 79 dealate (colony) queens and the contents of their sperm receptacles and by detailed genetic analysis of 11 monogynous (single-queen) and nine polygynous colonies. Results indicated that 95% of queens were singly mated and 5% of queens were doubly mated. The corrected population mean mating frequency was 1.06. Parentage analysis of adults and brood in 17 colonies (10 monogynous, 7 polygynous) showed that female offspring attributable to each of 31 queens were full sisters, confirming that queens typically mate once. Inbreeding coefficients, queen-mate relatedness of zero and the low incidence of diploid males provided evidence that L. acervorum sexuals mate entirely or almost entirely at random. Males mated to queens in the same polygynous colony were not related to one another. Our data also confirmed that polygynous colonies contain queens that are related on average and that their workers had a mixed maternity. We conclude that the mating system of L. acervorum involves queens that mate near nests with unrelated males and then seek readoption by those nests, and queens that mate in mating aggregations away from nests, also with unrelated males.  相似文献   

16.
During reproduction, ant colonies produce winged queens. These new queens usually leave the nest to mate and can then establish a new nest. If the new nest is close to an existing colony, it will be in competition with the existing colony. Therefore, workers will kill any mated queens they find outside the colony during the reproductive season. In this study, factors that might determine whether workers eliminate queens were investigated. Mating status (mated or unmated), colony origin (same or different to tested workers) and mating partners (inbred or outbred) of the queens of Japanese harvester ants (Messor aciculatus) were manipulated and the workers’ behavior towards the queens was observed. Mated queens were always attacked by workers, though this was not affected by either colony origin or mating partners. These results suggest that mating status triggers elimination of queens by workers, and that the colony origin and mating partner are unlikely to be important roles in elimination of queens.  相似文献   

17.
We investigated population genetic structure, mating system, worker reproduction and thelytokous parthenogenesis in the desert ant Cataglyphis livida. Pedigree analyses at polymorphic microsatellite loci show that colonies are headed by a single queen, and that queens are mated with two to eight males. No inbreeding was found in the population sampled. Colonies are genetically differentiated and exhibit no isolation-by-distance pattern, consistent with independent foundation of new colonies. Workers do reproduce and lay haploid (arrhenotokous) eggs in queenless colonies; conversely, we found no evidence of worker reproduction in queenright nests. In contrast with C. cursor, where new queens are produced by thelytokous parthenogenesis, female sexuals and workers of C. livida arise from classical sexual reproduction. We discuss the parallels and contrasts between the mating system and population structure in C. livida and the other Cataglyphis species studied so far.  相似文献   

18.
1 Laboratory-reared normal, and wild female Mediterranean fruit flies, Ceratitis capitata (Wiedemann), were assayed in outdoor field cages to assess the impact of a mating-induced behavioural switch on mating and subsequent oviposition activity. 2 Virgin females preferred interactions with males leading to mating over attraction to, and oviposition in, artificial yellow spheres containing guava odour or green apples hung in a guava tree. Laboratory-reared females previously mated with either laboratory-reared normal males or laboratory-reared irradiated (sterile) males showed little interest in remating with males and instead, were much more likely to be found arrested on artificial and real fruit and ovipositing. Oviposition on artificial fruit was five times greater by females that had mated with either normal or irradiated males than by virgin females. Wild females showed similar qualitative changes in the mating-induced behavioural switch; however, oviposition activity was significantly less than for laboratory-reared females. 3 These results confirm that mating has a profound effect on the behaviour of female Mediterranean fruit flies and that irradiated males are functionally equal with normal males (lab-reared or wild) in their ability to alter female behaviour. These results are discussed in the context of the sterile insect technique for control of Mediterranean fruit flies in the field.  相似文献   

19.
Under haplodiploidy, a characteristic trait of all Hymenoptera, females develop from fertilised eggs, and males from unfertilised ones. Males are therefore typically haploid. Yet, inbreeding can lead to the production of diploid males that often fail in development, are sterile or are of lower fertility. In most Hymenoptera, inbreeding is avoided by dispersal flights of one or both sexes, leading to low diploid male loads. We investigated causes for the production of diploid males and their performance in a highly inbred social Hymenopteran species. In the ant Hypoponera opacior, inbreeding occurs between wingless sexuals, which mate within the mother nest, whereas winged sexuals outbreed during mating flights earlier in the season. Wingless males mate with queen pupae and guard their mating partners. We found that they mated randomly with respect to relatedness, indicating that males do not avoid mating with close kin. These frequent sib‐matings lead to the production of diploid males, which are able to sire sterile triploid offspring. We compared mating activity and lifespan of haploid and diploid wingless males. As sexual selection acts on the time of emergence and body size in this species, we also investigated these traits. Diploid males resembled haploid ones in all investigated traits. Hence, albeit diploid males cannot produce fertile offspring, they keep up with haploid males in their lifetime mating success. Moreover, by fathering viable triploid workers, they contribute to the colonies' work force. In conclusion, the lack of inbreeding avoidance led to frequent sib‐matings of wingless sexuals, which in turn resulted in the regular production of diploid males. However, in contrast to many other Hymenopteran species, diploid males exhibit normal sexual behaviour and sire viable, albeit sterile daughters.  相似文献   

20.
Summary We studied the reproductive behavior of the ponerine antHypoponera bondroiti from Okinawa, Japan. This species has dimorphic wingless ergatoid males (major and minor), dimorphic reproductive females (alate queens and wingless reproductive intercastes), and workers. Workers have neither ovarioles nor spermatheca. Major ergatoid males are the largest colony members. Two major males fought one another in the nest until one disappeared, leaving the other to occupy the nest chambers where queens emerge and mate. Minor ergatoid males also fought one another, although they seemed to be less pugnacious, resulting in occasional cohabitation of multiple minor males in the same nest chamber. Major males never attacked minor ones, allowing them to coexist in the same nest chamber. Minor males seemed to mimic females. Both major and minor males mated with both alate queens and intercastes within the nest. After mating, some alate queens shed their wings and remained in the nest, while the others left the nest for dispersal in the laboratory. Intercastes remained in the nest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号