首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The aim of this study was to characterize the short-term land-cover change processes that were detected in Eastern Africa, based on a set of change metrics that allow for the quantification of interannual changes in vegetation productivity, changes in vegetation phenology and a combination of both. We tested to what extent land use, fire activity and livestock grazing modified the vegetation response to short-term rainfall variability in East Africa and how this is reflected in change metrics derived from MODerate Imaging Spectrometer (MODIS) time series of remote sensing data. We used a hierarchical approach to disentangle the contribution of human activities and climate variability to the patterns of short-term vegetation change in East Africa at different levels of organization. Our results clearly show that land use significantly influences the vegetation response to rainfall variability as measured by time series of MODIS data. Areas with different types of land use react in a different way to interannual climate variability, leading to different values of the change indices depending on the land use type. The impact of land use is more reflected in interannual variability of vegetation productivity and overall change in the vegetation, whereas changes in phenology are mainly driven by climate variability and affect most vegetation types in similar ways. Our multilevel approach led to improved models and clearly demonstrated that climate influence plays at a different scale than land use, fire and herbivore grazing. It helped us to understand dynamics within and between biomes in the study area and investigate the relative importance of different factors influencing short-term variability in change indices at different scales.  相似文献   

2.
We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual‐mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present‐day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18–36%) and total carbon storage (3–13%) by 2080–2099 compared with the present‐day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present‐day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases.  相似文献   

3.
The Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic phenomena including climate, hurricanes, coastal development, agricultural runoff, oil spills, and fishing. These complex and interacting stressors, together with the highly dynamic nature of this ecosystem, present challenges for the effective management of its resources. We analyze a compilation of over 100 indicators representing physical, biological, and economic aspects of the Gulf of Mexico and find that an ecosystem‐wide reorganization occurred in the mid‐1990s. Further analysis of fishery landings composition data indicates a major shift in the late 1970s coincident with the advent of US national fisheries management policy, as well as significant shifts in the mid‐1960s and the mid‐1990s. These latter shifts are aligned temporally with changes in a major climate mode in the Atlantic Ocean: the Atlantic Multidecadal Oscillation (AMO). We provide an explanation for how the AMO may drive physical changes in the Gulf of Mexico, thus altering higher‐level ecosystem dynamics. The hypotheses presented here should provide focus for further targeted studies, particularly in regard to whether and how management should adjust to different climate regimes or states of nature. Our study highlights the challenges in understanding the effects of climatic drivers against a background of multiple anthropogenic pressures, particularly in a system where these forces interact in complex and nonlinear ways.  相似文献   

4.
Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall‐driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of prerain flush effects in some parts of Africa. The spatial extent of this prerain green‐up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to‐date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of prerain green‐up over Africa than previously reported, with prerain green‐up being the norm rather than the exception. We also show the relative sparsity of postrain green‐up, confined largely to the Sudano‐Sahel region. While the prerain green‐up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling.  相似文献   

5.
6.
Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad , when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.  相似文献   

7.
Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem‐scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear‐water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high‐frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for >4 weeks even though thermal stratification re‐established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm‐induced effects, such as inputs of terrestrial materials by increased catchment run‐off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear‐water lakes.  相似文献   

8.
Summary Animal census data from Lake Manyara National Park in northern Tanzania are presented. The data refer to large mammalian herbivores, that is individually heavier than twenty kg, of which the numbers were counted in nine different years between 1959 and 1984. The total biomass of these herbivores was comprised mainly of African buffalo and African elephant. Five functional groups of herbivores were distinguished (buffalo, elephant-as-grazer, elephant-as-browser, other grazers, and other browsers). The pressures of all these groups were constant over time with the exception of that by buffalo. Buffalo numbers increased since the last outbreak of rinderpest in 1959. There was no correlation between herbivore biomass and rainfall fluctuations. Individual species showed large fluctuations in their numbers but within the total herbivore assemblage the different species compensated the fluctuations of the other species. This resulted in an overall constancy of herbivore biomass, and, thus, the carrying capacity of the system has to be viewed on the level of all species combined and not on that of the individual species. This view is supported by the result that size of the stability index showed that the system of herbivore species was stable.  相似文献   

9.
This article focuses on the life history of a single street boy in northwestern Tanzania, whom I name Juma. I suggest that Juma's experiences and the life trajectory of himself and of significant individuals around him (particularly his mother) were structured by everyday violence. I describe everyday violence in terms of a conjuncture between macrostructural forces in East Africa (including a history of failed development schemes and the contemporary political economy of neoliberalism) and the lived experience of individuals as they negotiate local, contextual factors (including land-tenure practices, the power dynamics between immediate and extended kin, life on the streets, and constructions of gender and sexuality). I suggest that AIDS and its many impacts on Juma's life course can only be understood in a broader context of everyday violence. From this basis, I draw several general conclusions regarding AIDS prevention and intervention strategies.  相似文献   

10.
The chronometric dating evidence for all hominid fossils from Africa and the Near East that have previously been dated to 500-50 ka is critically assessed using the concept of chronometric hygiene, and these dates are revised using Bayesian statistical analyses where possible. Sixteen relevant hominid sites lacking chronometric evidence are briefly discussed. Chronometric evidence from 37 sites is assessed in detail. The dates for many hominid fossils are poorly constrained, with a number dated by comparisons of faunal assemblages-a method that does not have good chronological resolution for much of the last million years. For sites with stratigraphic sequences of dates, it is generally possible to refine the dating, but in some cases, the revised chronology is less precise than previous chronologies. Fossils over 200 ka in age tend to be poorly dated, but for the last 200 kyr, dating is better due to the availability of electron-spin-resonance and thermoluminescence dating. Consideration of the chronologies favored by the proponents of the out-of-Africa and multiregional hypotheses of human evolution shows their selectivity. The chronological assessment of the fossils here is compatible with either hypothesis. If evolutionary schemes that do not rely on the morphology of the hominid fossils to decide the sequence of fossils are to be built, then further dating is required, alongside full publication of existing dates.  相似文献   

11.
12.
M. Rejmánek 《Oecologia》1992,89(3):454-456
Summary Prins and Douglas-Hamilton (1990) analyzed data based on nine census counts of large herbivore species in Lake Manyara National Park, northern Tanzania, over the period 1959–1984. Their major conclusion was that even if individual species-showed large fluctuations in numbers, the different species compensated the fluctuations of the other species in a way resulting in a constancy of total herbivore biomass, constancy of plant biomass consumption, and overall stability of the system under natural conditions. The authors believed that they had found a support for this view by calculating the stability index based on correlations between numbers of large herbivores. In this paper I show that Prins and Douglas-Hamilton's calculation of the stability index was not justified. Grazing and browsing pressure by large herbivores in Lake Manyara National Park seems to be remarkably constant. However, available information does not allow any rigorous conclusions about the stability of this community. We need more data from other systems dominated by large herbivores to be able to make comparisons and to be able to say which systems are more stable and in what sense.  相似文献   

13.
Increasing population pressure, land scarcity and diminishing production resources are promoting goat production in the tropics. Dairy goat breeding (DGB) projects have been implemented by development agencies, governments and the private sector with the objective of improving the dairy merits genetically through crossbreeding with exotic genotypes. The performance of these projects is still a cause for concern. Therefore, sustainable dairy goat breeding forces various stakeholders to re-orient their breeding goals, strategies and design of breeding programmes towards a sustainability perspective. This paper highlights a set of key requirements for establishing sustainable dairy goat breeding programmes. Conclusions are drawn based on the lessons learnt from numerous examples of DGB projects in East and Central Africa keeping sustainability concerns insight to inform on-going and future projects.  相似文献   

14.
Anthropogenic disturbances often affect the abundance and diversity of ants (Hymenoptera: Formicidae) but relatively few studies have explored the implications of such changes on the ecosystem services mediated by these insects. Here, we evaluated how the transformation of Cerrado savanna habitats into crop plantations affects the abundance, diversity, and the predatory activity of ants. A survey of the ant faunas foraging above‐ and belowground was performed in six crop and six non‐crop (i.e., native vegetation) sites. Above‐ and belowground rates of ant predation were estimated at these same sites using mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae), as baits, simulating crop herbivores. Belowground predation rates were significantly greater in the non‐crop sites, despite the lack of difference in overall abundance and species richness of ants foraging belowground between the crop vs. non‐crop sites. In contrast, we did not detect any significant difference in aboveground predation rates between crop vs. non‐crop sites even though there were significantly more species of ants foraging aboveground in the non‐crop sites. Army ants (subfamily Dorylinae) were the main predatory species belowground, and their abundance was significantly greater in non‐crop sites. In contrast, the main predators aboveground were omnivore ants of the genera Pheidole and Solenopsis, which had similar abundances in the crop and non‐crop sites. Overall, our results indicate that transformation of native Cerrado habitats into crop plantations reduces the abundance of some important predatory species, notably those that forage belowground, and this may negatively affect the potential for ants to provide pest control services in agroecosystems.  相似文献   

15.
Three hundred and eleven honeybee samples from 12 countries in the Middle East and North Africa (MENA) (Jordan, Lebanon, Syria, Iraq, Egypt, Libya, Tunisia, Algeria, Morocco, Yemen, Palestine, and Sudan) were analyzed for the presence of deformed wing virus (DWV). The prevalence of DWV throughout the MENA region was pervasive, but variable. The highest prevalence was found in Lebanon and Syria, with prevalence dropping in Palestine, Jordan, and Egypt before increasing slightly moving westwards to Algeria and Morocco Phylogenetic analysis of a 194 nucleotide section of the DWV Lp gene did not identify any significant phylogenetic resolution among the samples, although the sequences did show consistent regional clustering, including an interesting geographic gradient from Morocco through North Africa to Jordan and Syria. The sequences revealed several clear variability hotspots in the deduced amino acid sequence, which furthermore showed some patterns of regional identity. Furthermore, the sequence variants from the Middle East and North Africa appear more numerous and diverse than those from Europe.  相似文献   

16.
In this study, we report novel data on mitochondrial DNA in two of the largest eastern Bantu‐speaking populations, the Shona from Zimbabwe and the Hutu from Rwanda. The goal is to evaluate the genetic relationships of these two ethnic groups with other Bantu‐speaking populations. Moreover, by comparing our data with those from other Niger‐Congo speaking populations, we aim to clarify some aspects of evolutionary and demographic processes accompanying the spread of Bantu languages in sub‐Saharan Africa and to test if patterns of genetic variation fit with models of population expansion based on linguistic and archeological data. The results indicate that the Shona and Hutu are closely related to the other Bantu‐speaking populations. However, there are some differences in haplogroup composition between the two populations, mainly due to different genetic contributions from neighboring populations. This result is confirmed by estimates of migration rates which show high levels of gene flow not only between pairs of Bantu‐speaking populations, but also between Bantu and non‐Bantu speakers. The observed pattern of genetic variability (high genetic homogeneity and high levels of gene flow) supports a linguistic model suggesting a gradual spread of Bantu‐speakers, with strong interactions between the different lines of Bantu‐speaker descent, and is also in agreement with recent archeological findings. In conclusion, our data emphasize the role that population admixture has played at different times and to varying degrees in the dispersal of Bantu languages. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine‐scale predictions) and potential vegetation climate envelope models (for coarse‐grained, large‐scale predictions). Here, we develop and apply an intermediate approach wherein we use stand‐level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate‐related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought‐related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high‐elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States.  相似文献   

18.
19.
20.
A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year‐to‐year variability in growth. Numerous dendrochronological (tree‐ring) studies have identified climate factors that influence year‐to‐year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand‐level (as opposed to species‐level) growth. We argue that stand‐level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed‐species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand‐level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year‐to‐year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand‐level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species‐ and canopy‐position level. Our climate models were better fit to stand‐level biomass increment than to species‐level or canopy‐position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand‐level growth varies less from to year‐to‐year than species‐level or canopy‐position growth responses. By assessing stand‐level growth response to climate, we provide an alternative perspective on climate–growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号