首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we analysed chromosome number variation and chromomycin A3/4′,6‐diamidino‐2‐phenylindole (CMA/DAPI) banding patterns in 48 species belonging to 12 genera of subtribe Pleurothallidinae (Orchidaceae) in order to understand the chromosome evolution based on recent phylogenetic hypotheses and taxonomic treatments. All species had small chromosomes, with numbers ranging from 2n = 20 in two Specklinia spp. to 2n = 80 in an unidentified Octomeria sp. In Acianthera, the most highly represented genus in this study, a great diversity of chromosome number and pattern of fluorescent bands was observed, showing heterochromatin accumulation in Acianthera section Sicariae subsection Pectinatae. Interspecific ascending and, mainly, descending dysploidy were the main mechanisms of chromosome number evolution in subtribe Pleurothallidinae. For Pleurothallidinae, x = 20 is suggested as the basic chromosome number, the same suggested for the related subtribe Laeliinae and for the whole tribe Epidendreae. The Brazilian species of the mega‐genus Stelis had chromosomes with small amounts of heterochromatin and chromosome numbers based on x2 = 16. These are generally divergent from those reported for Andean and Meso‐American species, but in agreement with the monophyletic hypothesis proposed for Stelis spp. with a Brazilian Atlantic distribution. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 102–120.  相似文献   

2.
In this survey, chromosome counts of different species belonging to the genus Onosma are summarized and then karyological patterns available including frequency of cytotype occurrence, percentage of taxa with particular basic chromosome number and rate of polyploidy in the genus are evaluated. Quantitative parameters have been used to characterize chromosome number (CN) variation. In order to verify if variation patterns differ between three groups of Onosma, Index of CN Heterogeneity (ICNH) was quantified. In addition, meiotic chromosome numbers of 14 populations belonging to 11 species growing in Iran, namely Onosma araratica (2n = 2x = 16), O. asperrima (2n = 2x = 16), O. bulbotricha (2n = 2x = 18), O. kotschyi (2n = 2x = 16), O. microcarpa (2n = 2x = 16), O. nigricaulis (2n = 2x = 16), O. nervosa (2n = 2x = 16), O. obtusifolia (2n = 2x = 16), O. pachypoda (2n = 2x = 16), O. stenosiphon (2n = 2x = 20) and O. subsericea (2n = 2x = 16), were determined. With the exception of O. microcarpa and O. bulbotricha, all chromosome counts are reported for the first time. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Chromosome numbers and measurements were recorded in 47 individuals of ten taxa of Primula , representing eight species and two subspecies from ten populations. The basic numbers of chromosomes were x  = 8, 9 or 11, and they were mostly metacentric, medium-long to medium-small, ranging in length from c . 3.6 µm to 1.6 µm. Diploid chromosome numbers of 2 n  = 2 x  = 24 and 22 were scored for the first time in P. loeseneri Kitag. and P. prenantha Balf. & Sm., respectively. A new ploidy level of 2 n  = 4 x  = 44 was found in P. burmanica Balf. & King. The recorded diploid numbers of the remaining species confirmed earlier reports. Interspecific variability in chromosome numbers was correlated with heterogeneity in their mean length. Comparison of the data with those in the literature revealed that the observed variability of chromosomal characters was compatible with the other taxonomic criteria and supports the current taxonomic delimitation. Chromosomal variation at the diploid level is the predominant feature in Primula evolution, and allopatric speciation has played a major role in its specific diversity. Subgen. Aleuritia could represent the main clade from which the other subgenera have evolved. The origin of the chromosome numbers, geographical distribution and evolution of the species were assessed, and the parallel polyphyletic mode of evolution in the genus was confirmed.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 211–219.  相似文献   

4.
六种犁头尖属植物(天南星科)的核型研究   总被引:6,自引:0,他引:6  
报道了 6种 8个居群犁头尖属 ( Typhonium Schott)植物的核型 ,其结果如下 :( 1 )独角莲 ( T.gigan-teum)北京居群 2 n=4 x=5 2 =4 4m+ 7sm+ 1 st;( 2 )鞭檐犁头尖 ( T.flagelliforme)金平居群 2 n=3x=2 4 =3m+ 9sm( 4 SAT) + 1 2 st,河内居群 2 n=4 x=32 =7m+ 2 0 st+ 4sm+ 1 t;( 3)单籽犁头尖 ( T. calcicolum)西畴居群2 n=4 x=5 2 =2 1 sm+ 2 3m( 5 SAT) + 8st;( 4 )犁头尖 ( T.blumei)重庆居群 2 n=4 x=5 2 =4 0 m( 1 SAT) + 1 2 sm( 3SAT) ;( 5 )马蹄犁头尖 ( T.trilobatum)西双版纳居群 2 n=2 x=1 8=4 sm( 2 SAT) + 1 2 m+ 2 st,河内居群 2 n=2 x=1 8=2 st+ 9m+ 7sm;( 6 )金慈菇 ( T. roxburgii)个旧居群 2 n=2 x=1 8=8sm+ 1 0 m( 2 SAT)。其中鞭檐犁头尖 2 n=2 4、32 ,金慈菇 2 n=1 8均为首次报道 ,同时分析讨论了本属植物染色体基数和倍性的多样性及其可能的原始基数  相似文献   

5.
Chromosomal changes, including polyploidy and dysploidy, often accompany speciation of angiosperms in continental regions. In contrast, on geologically young oceanic islands, little change in chromosome number occurs during speciation of endemics. Absence of change in number of chromosomes does not necessarily mean lack of chromosomal rearrangements. To determine whether detailed karyotypic changes accompany speciation in island habitats, nine endemic species in Abelia , Acer , Campanula , Dystaenia , Hepatica , Rubus , Valeriana , Veronica and Viola of Ullung Island, a geologically young volcanic island off the coast of peninsular Korea in the Eastern Sea, have been compared with progenitors in mainland Korea and Japan. Results confirm that no changes in ploidy level or dysploidy have occurred during speciation of these endemic island taxa. Detailed karyotypic analysis indicates that most of the taxa have not undergone significant macromorphological chromosomal changes. In the bitypic genus Dystaenia (Umbelliferae), D. takesimana , endemic to Ullung Island, differs karyotypically from its progenitor, D. ibukiensis from Japan, in a number of chromosomal elements, some of which appear to be satellites and others of which may represent B chromosomes. This suggests that rDNA loci might have been lost or rearranged during speciation. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 138 , 93–105.  相似文献   

6.
Chromosome numbers and measurements were recorded in 22 individuals from six populations of six species of Onobrychis , including the Egyptian species and most representatives of section Lophobrychis . The basic number of chromosomes was either x = 7 or x = 8 and the chromosomes were medium to medium-small, ranging in length, from c . 1.6 μm to 2.6 μm. Two new ploidy levels were found, 2 n = 4 x = 28 in O. bobrovii Grossh. and 2 n = 4 x = 32 in O. pulchella Schrenk. The origin of the chromosome numbers, geographical distribution and evolution of the species were assessed. Comparison of the data with those in the literature revealed that the observed interspecific variability among section Lophobrychis can be useful in taxonomic delimitation and demonstrates a complexity of evolution between the diploid and polyploid species. Section Lophobrychis has a comparatively highly derived organization and can be considered as a heterogeneous unit in the genus Onobrychis .  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 409–414.  相似文献   

7.
Phylogenetic relationships in the genus Paphiopedilum were studied using nuclear ribosomal internal transcribed spacer (ITS) and plastid sequence data. The results confirm that the genus Paphiopedilum is monophyletic, and the division of the genus into three subgenera Parvisepalum, Brachypetalum and Paphiopedilum is well supported. Four sections of subgenus Paphiopedilum (Pardalopetalum, Cochlopetalum, Paphiopedilum and Barbata) are recovered as in a recent infrageneric treatment, with strong support. Section Coryopedilum is also recovered, with low bootstrap but high posterior probability values for support of monophyly. Relationships in section Barbata remain unresolved, and short branch lengths and the narrow geographical distribution of many species in the section suggest that it possibly underwent rapid radiation. Mapping chromosome and genome size data (including some new genome size measurements) onto the phylogenetic framework shows that there is no clear trend in increase in chromosome number in the genus. However, the diploid chromosome number of 2n = 26 in subgenera Parvisepalum and Brachypetalum suggests that this is the ancestral condition, and higher chromosome numbers in sections Cochlopetalum and Barbata suggest that centric fission has possibly occurred in parallel in these sections. The trend for genome size evolution is also unclear, although species in section Barbata have larger genome sizes than those in other sections. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 176–196.  相似文献   

8.
Genus Scytodes includes most species of the spider family Scytodidae. Until now, 187 species of the genus have been described. In spite of this great diversity, only three Scytodes species were karyotyped so far. The present paper provides for the first time karyotype analysis of two synanthropic species, Scytodes fusca and Scytodes itapevi. Furthermore, new data on karyotype of Scytodes globula are also provided using conventional and differential cytogenetical procedures. The diploid number in the genus Scytodes varied considerably, namely from 2n = 13 to 2n = 31. The diploid number found in S. globula (2n♂ = 13) is the lowest in haplogyne spiders with monocentric chromosomes. Except S. globula, this number has been found only in one haplogyne spider with monocentric chromosomes, namely Ochyrocera sp. (Ochyroceratidae). On the contrary, the diploid number of S. fusca (2n♂ = 31) is one of the highest diploid numbers recorded in haplogyne spiders. The degree of intrageneric variation found in the genus Scytodes is the highest recorded in araneomorph spiders with monocentric chromosomes so far. Some karyotype characteristics (diploid number, chromosome morphology, total chromosome length, and distribution of constitutive heterochromatin) allowed us to postulate a close relationship between S. globula and S. itapevi. According to the karyotype data, S. fusca is not closely related to these two species. This conclusion corroborates a recent taxonomic work that grouped S. globula, S. itapevi, and other four Scytodes species in the ‘globula group’.  相似文献   

9.
Twenty-two populations of seven species of Cremanthodium from high altitude regions of western China were observed karyologically. C. ellisii, C. microglossum, C. brunneo-pilosum, C. stenoglossum, C. discoideum and C. lineare all had the same chromosome number of 2 n = 58 whereas C. humile had 2 n = 60. All chromosome numbers of these species are documented here for the first time. The basic number of x = 30 is new for this genus. The karyotypes of all species belong to 2A type according to Stebbins' asymmetry classification of karyotypes. Two basic chromosome numbers, x = 30 and x = 29 in Cremanthodium , correspond exactly to two branching patterns in this genus, sympodial versus monopodial. The systematic and taxonomic statuses of the sympodial species need further study. The karyomorphological data provide no support to the sectional subdivision in Cremanthodium .  相似文献   

10.
11.
Chromosome data are fundamental in evolution. However, there has been no attempt to synthesize and evaluate the significance of such information from a phylogenetic perspective in the giant genus Solanum, which was the aim of this work. New and published information of the main cytotaxonomic features (chromosome number, polyploidy, total length of the haploid complement, mean chromosome length, mean arm ratio, karyotype formula, nuclear DNA amount, number/position of rDNA sites) was compiled and mapped onto an embracing Solanaceae phylogeny, performing Ancestral States Reconstruction. There were 506 Solanum species with chromosome counts (49.7% from an estimated total of 1,018 spp.), with x?=?12 being the most frequent number (97%). Species with karyotypes represent 18.8%, while 8% have been studied with any molecular cytogenetic technique. Chromosome characters showed transitions associated with supported nodes, some of which have undergone fewer transitions than others. The common ancestor of all Solanum was a diploid with 2n?=?24, a karyotype with st and/or t chromosomes, 2C DNA content of 1–1.2 pg, one locus of 18–5.8–26S rDNA and one of 5S, both loci being asyntenic. The chromosomal variables behave as homoplastic, with reversions in all branches. The analysed characters were sorted from more to less conserved: asynteny of rDNA loci; number of sites of 18–5.8–26S; chromosome number; karyotype formula; number of 5S loci. This pattern of chromosomal evolution distinguishes Solanum from closely related genera and from genera from other families with a similar number of species.  相似文献   

12.
Chromosome number variations play an important role in the genus Medicago. In addition to polyploidy there are cases of dysploidy as evidenced by two basic numbers, x = 8 and x = 7, the latter limited to five annual species having 2n = 14. Annuals are diploid with the exception of Medicago scutellata and Medicago rugosa which have 2n = 30 and are considered the result of crosses between the 2n = 16 and 2n = 14 species. However, this hypothesis has never been tested. This study was carried out to investigate the 2n = 14 and 2n = 30 karyotypes and verify the allopolyploid origin of M. scutellata and M. rugosa. Fluorescence in situ hybridization (FISH) of rDNA probes and genomic in situ hybridization (GISH) were performed. FISH showed that all five diploids with 2n = 14 have one pair of 45S and one pair of 5S rDNA sites. M. scutellata displayed four sites of 45S and four sites of 5S rDNA, while in M. rugosa only one pair of each of these sites was found. GISH did not produce signals useful to identify the presumed progenitors with 14 chromosomes. This result suggests alternative evolutionary pathways, such as the formation of tetraploids (2n = 32) and subsequent dysploidy events leading to the chromosome number reduction.  相似文献   

13.
The present study examines chromosome and genome size evolution in Luzula (woodrush; Juncaceae), a monocot genus with holocentric chromosomes. Detailed karyotypes and genome size estimates were obtained for seven Luzula spp., and these were combined with additional data from the literature to enable a comprehensive cytological analysis of the genus. So that the direction of karyotype and genome size changes could be determined, the cytological data were superimposed onto a phylogenetic tree based on the trnL‐F and internal transcribed spacer (ITS) DNA regions. Overall, Luzula shows considerable cytological variation both in terms of chromosome number (2n = 6–66) and genome size (15‐fold variation; 2C = 0.56–8.51 pg; 547.7–8322.8 Mb). In addition, there is considerable diversity in the genomic mechanisms responsible, with the range of karyotypes arising via agmatoploidy (chromosome fission), symploidy (chromosome fusion) and/or polyploidy accompanied, in some cases, by the amplification or elimination of DNA. Viewed in an evolutionary framework, no broad trend in karyotype or genome evolution was apparent across the genus; instead, different mechanisms of karyotype evolution appear to be operating in different clades. It is clear that Luzula exhibits considerable genomic flexibility and tolerance to large, genome‐scale changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 529–541.  相似文献   

14.
Polyploidization has played an important role in the diversification of the genus Sesleria (Poaceae), which comprises c. 48 species and subspecies mostly distributed in Europe. The genus' centre of diversity clearly is the Balkan Peninsula, harbouring about 80% of the species, half of which are endemic to this area. We employed chromosome counts, measurements of absolute genome size and determination of relative DNA‐content for 460 populations belonging to 43 species of Sesleria. Our main aim was to provide essential baseline data for future molecular genetic reconstructions of the genus' evolutionary history. Relative genome size allowed for a mostly clear separation of four ploidy levels. The most frequent and widespread cytotypes are tetraploids followed by octoploids, while di‐ and dodecaploids were only found in a few species. We present first chromosome numbers for the tetraploid species S. doerfleri, S. phleoides, S. skipetarum and S. tuzsonii as well as for diploid S. ovata. Based on relative and partly also on absolute genome size measurements, ploidy level was determined in tetraploid S. rhodopaea and S. voronovii for the first time, and new cytotypes were identified in S. interrupta, S. kalnikensis and S. wettsteinii (tetraploids), S. caerulea, S. klasterskyi, S. latifolia, S. tenerrima, S. ujhelyii and S. vaginalis (octoploids), and S. albanica and S. vaginalis (dodecaploids). While most Sesleria species are ploidy‐uniform, several comprise two or even, in the case of S. vaginalis, three ploidy levels. Genome downsizing after polyploidization was confirmed by significant negative correlation between ploidy level and monoploid genome size. Finally, we found a significant increase in monoploid relative genome size towards the margin of the genus' distribution area, which may be triggered by increased activity of transposable element in populations exposed to environmental or genomic stress. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 126–143.  相似文献   

15.
16.
In many North American prairies, populations of Andropogon gerardii Vitman (Poaceae) are composed of hexaploid and enneaploid cytotypes (2 n  = 60, 90), with intermediates occurring occasionally. Under controlled pollination, the two common cytotypes can be crossed, producing progeny with a range of chromosome numbers. In an investigation of fertility and compatibilities of intermediate cytotypes, individuals with chromosome numbers between 60 and 90 were crossed with each other, with the 2 n  = 60 and 90 cytotypes, and with South American Andropogon species having 60 chromosomes. Regardless of cytotype, all A. gerardii plants had some fertility and virtually all crosses produced seeds. Cytotype is only partially predictive of fertility. Inter-specific hybrids between A. gerardii and South American hexaploid species were vigorous but sterile. Gene flow in natural A. gerardii populations of mixed cytotype probably involves plants of all cytotypes.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 141 , 95–103.  相似文献   

17.
L Fishman  J H Willis  C A Wu  Y-W Lee 《Heredity》2014,112(5):562-568
Changes in chromosome number and structure are important contributors to adaptation, speciation and macroevolution. In flowering plants, polyploidy and subsequent reductions in chromosome number by fusion are major sources of chromosomal evolution, but chromosome number increase by fission has been relatively unexplored. Here, we use comparative linkage mapping with gene-based markers to reconstruct chromosomal synteny within the model flowering plant genus Mimulus (monkeyflowers). Two sections of the genus with haploid numbers ⩾14 have been inferred to be relatively recent polyploids because they are phylogenetically nested within numerous taxa with low base numbers (n=8–10). We combined multiple data sets to build integrated genetic maps of the M. guttatus species complex (section Simiolus, n=14) and the M. lewisii group (section Erythranthe; n=8), and then aligned the two integrated maps using >100 shared markers. We observed strong segmental synteny between M. lewisii and M. guttatus maps, with essentially 1-to-1 correspondence across each of 16 chromosomal blocks. Assuming that the M. lewisii (and widespread) base number of 8 is ancestral, reconstruction of 14 M. guttatus chromosomes requires at least eight fission events (likely shared by Simiolus and sister section Paradanthus (n=16)), plus two fusion events. This apparent burst of fission in the yellow monkeyflower lineages raises new questions about mechanisms and consequences of chromosomal fission in plants. Our comparative maps also provide insight into the origins of a chromosome exhibiting centromere-associated female meiotic drive and create a framework for transferring M. guttatus genome resources across the entire genus.  相似文献   

18.
对中国云南西部和西北部分布的腋花扭柄花Streptopus simplex的4个居群进行了细胞学研究。生长在云南西北香格里拉县(原中甸县)碧塔海和小中甸冷杉林中的腋花扭柄花两个居群的体细胞染色体数目为2n=2x=18,而生长在高黎贡山的福贡县片马和贡山县的灌丛中的植物体细胞染色体数目则为2n=2x=14。2n=14为腋花扭柄花一个新的染色体数目,x=7为扭柄花属一个新的染色体基数。香格里拉碧塔海和小中甸两个居群的核型公式分别为2n=4m+8sm+4st和2n=8m+2sm+6st,染色体逐渐变小;贡山和福贡片马两个居群的核型公式分别为2n=14=4m+10sm和2n=14=7m+7sm,其中第一对中部着丝粒的染色体显著大于其余染色体。由于x=8是扭柄花属最常见的染色体基数,因此可认为x=8是腋花扭柄花的染色体原始基数,x=7的数目是衍生的;x=7居群染色体的一条大染色体可能是由x=8的染色体的两条st型染色体的着丝粒发生了罗伯逊易位而来。  相似文献   

19.
With 600 species Ranunculus is the largest genus in Ranunculaceae, and has a broad global distribution. We studied the karyotypes of R. constantinopolitanus and R. sericeus species of Ranunculaceae and identified their symmetry level. New chromosome numbers of 2n = 21 (Nodeh woods population) and 2n ca. 63 (Javaherdeh population) are reported for R. constantinopolitanus. Two different populations of R. sericeus had two different chromosome results. We investigated morphological and karyological studies along with pollens micromorphology. Different populations of R. constantinopolitanus and R. sericeus, with different chromosome numbers showed morphological and micromorphological differences. Therefore, we considered the two populations of R. sericeus as cytotypes. There was a correlation between the studied morphological characters and pollen size with ploidy levels in the two R. constantinopolitanus populations.  相似文献   

20.
唇形科独一味属和五种糙苏属植物的核形态研究   总被引:1,自引:0,他引:1  
首次报道了唇形科Lamiaceae独一味属Lamiophlomis和五种糙苏属Phlomis植物的染色体数目和核型。它们的间期核均属球状前染色体型,有丝分裂前期染色体均为中间型。中期染色体核型公式如下:独一味L.rotata,2n=2x=22=18m 4sm;糙苏P.umbrosa,2n=2x=22=22m;裂萼糙苏P.ruptilis,2n=2x=22=22m;假秦艽P.betonicoides,2n=2x=22=22m;黑花糙苏P.melanantha,2n=2x=22=22m(2sat);糙毛糙苏P.strigosa,2n=6x=66=60m 6sm;染色体基数均为x=11。这表明独一味与糙苏属的糙苏组sect.Phlomoides植物具有相同的染色体基数,反映出两者较为密切的系统演化关系,推断独一味很可能是糙苏属的一个种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号