首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tamandua tetradactyla (Pilosa), the lesser anteater, is a medium‐size mammal from South America. Its wide distribution through different landscapes, solitary and nocturnal habits, and the difficulty to capture and contain specimens limit the amount of individuals and populations sampled during fieldworks. These features along with the lack of specific molecular markers for the lesser anteater might be the causes for paucity in population genetic studies for the species. Historical samples from museum specimens, such as skins, and non‐invasive samples, such as plucked hair, can be supplementary sources of DNA samples. However, the DNA quantity and quality of these samples may be limiting factors in molecular studies. In this study, we describe nine microsatellite loci for T. tetradactyla and test the amplification success, data reliability and estimate errors on both historical and non‐invasive sample sets. We tested nine polymorphic microsatellites and applied the quality index approach to evaluate the relative performance in genotype analysis of 138 historical samples (study skin) and 19 non‐invasive samples (plucked hair). The observed results show a much superior DNA quality of non‐invasive over historical samples and support the quality index analysis as a practical tool to exclude samples with doubtful performance in genetic studies. We also found a relationship between the age of non‐invasive samples and DNA quality, but lack of evidence of this pattern for historical samples.  相似文献   

2.
The internal transcribed spacer (ITS) of nuclear ribosomal DNA is one of the most commonly used DNA markers in plant phylogenetic and DNA barcoding analyses, and it has been recommended as a core plant DNA barcode. Despite this popularity, the universality and specificity of PCR primers for the ITS region are not satisfactory, resulting in amplification and sequencing difficulties. By thoroughly surveying and analysing the 18S, 5.8S and 26S sequences of Plantae and Fungi from GenBank, we designed new universal and plant‐specific PCR primers for amplifying the whole ITS region and a part of it (ITS1 or ITS2) of plants. In silico analyses of the new and the existing ITS primers based on these highly representative data sets indicated that (i) the newly designed universal primers are suitable for over 95% of plants in most groups; and (ii) the plant‐specific primers are suitable for over 85% of plants in most groups without amplification of fungi. A total of 335 samples from 219 angiosperm families, 11 gymnosperm families, 24 fern and lycophyte families, 16 moss families and 17 fungus families were used to test the performances of these primers. In vitro PCR produced similar results to those from the in silico analyses. Our new primer pairs gave PCR improvements up to 30% compared with common‐used ones. The new universal ITS primers will find wide application in both plant and fungal biology, and the new plant‐specific ITS primers will, by eliminating PCR amplification of nonplant templates, significantly improve the quality of ITS sequence information collections in plant molecular systematics and DNA barcoding.  相似文献   

3.
We present the findings of a DNA barcoding study of the UK tree flora, implemented as part of an innovative, research‐based science education programme called ‘Tree School’. The UK tree flora comprises native and introduced species, and is a taxonomically diverse study group for the exploration of the potential and limitations of DNA barcoding. The children participating in the project collected voucher specimens and generated DNA barcode sequences from trees and shrubs found in the grounds and surrounding woodlands of a residential field centre in Dorset, UK. We assessed the potential of rbcL and matK markers for amplification and DNA sequencing success and for species discrimination among the 67 tree and shrub species included in this study. Although we achieved 100% PCR amplification and sequencing success for rbcL and matK, mononucleotide repeats affected sequence quality in matK for some taxonomic groups (e.g. Rosaceae). Species discrimination success ranged from 65% to 71% using tree‐based methods to 86% using BLASTN. The occurrence of known hybrids (diploid and polyploid) and their progenitors on the study site reduced the overall species discrimination success for both loci. This study demonstrates that, even in a floristic context, rbcL and matK alone are insufficient for the discrimination of UK tree species, especially where taxonomically complex groups are present. From a science education perspective, DNA barcoding represents a compelling and accessible platform for the engagement of non‐experts in ongoing research, providing an opportunity for them to contribute authentic scientific data to an international research campaign.  相似文献   

4.
DNA amplification in the field: move over PCR,here comes LAMP   总被引:2,自引:0,他引:2       下载免费PDF全文
It would not be an exaggeration to say that among molecular technologies, it is PCR (polymerase chain reaction) that underpins the discipline of molecular ecology as we know it today. With PCR, it has been possible to target the amplification of particular fragments of DNA, which can then be analysed in a multitude of ways. The capability of PCR to amplify DNA from a mere handful of copies further means that conservationists and ecologists are able to sample DNA unobtrusively and with minimal disturbance to the environment and the organisms of interest. However, a key disadvantage of PCR‐based methods has been the necessity for a generally non‐portable, laboratory setting to undertake the time‐consuming thermocycling protocols. LAMP (loop‐mediated isothermal amplification) offers a logistically simpler protocol: a relatively rapid DNA amplification reaction occurs at one temperature, and the products are visualized with a colour change within the reaction tubes. In the first field application of LAMP for an ecological study, Centeno‐Cuadros et al. ( 2016 ) demonstrates how LAMP can be used to determine the sex of three raptor species. By enabling DNA amplification in situ and in ‘real‐time’, LAMP promises to revolutionize how molecular ecology is practised in the field.  相似文献   

5.
PCR‐based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals’ sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex‐chromosome‐specific gene Chromo‐Helicase‐DNA binding protein using a loop‐mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo‐block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR‐based laboratory methods. Our successful cross‐species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species.  相似文献   

6.
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species.  相似文献   

7.
8.
Two isolates (CVd‐WHw and CVn‐WHg) recovered from Verticillium‐wilt‐symptomatic cotton grown in Hubei Province of China were identified based on their morphology, growth characteristics in culture, specific amplification and identification of internal transcribed spacer (ITS) rDNA sequence. According to the morphological characteristics, specific PCR amplification and ITS sequences, CVd‐WHw was identified as V. dahliae and CVn‐WHg as Gibellulopsis nigrescens. In bioassays, the two isolates had significantly lower pathogenicity to cotton plant than V. dahliae isolate CVd‐AYb. Cotton pre‐inoculated with isolate CVn‐WHg or CVd‐WHw exhibited reduced disease indices of Verticillium wilt compared with those inoculated with CVd‐AYb alone. Cotton co‐inoculated with CVn‐WHg or CVd‐WHw and CVd‐AYb provided increased protection from subsequent CVd‐AYb inoculation. These results suggest that the two isolates have the potential to be developed as biocontrol agents for the control of Verticillium wilt in cotton. To our knowledge, this is the first report of a cross‐protection phenomenon using Gibellulopsis nigrescens against Verticillium wilt caused by V. dahliae on cotton.  相似文献   

9.
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

10.
The use of nondestructive methods for obtaining DNA from amphibians (e.g. buccal swabs) allows genetic studies to be performed without affecting the survival of the studied individuals. In this study, we compared two methods of nondestructive DNA sampling, buccal swabs and interdigital membrane or toe‐clipping, in several amphibian species of different size: Rhinella spinulosa, Ratacamensis, six species of the genus Telmatobius and Pleurodema thaul. We evaluated the integrity of the DNA extracted by sequencing fragments of mitochondrial and nuclear genes and by generating amplified fragment length polymorphisms markers (AFLPs). In all cases, we obtained an adequate amount of DNA (mean range 55–298 ng/μL). We obtained identical DNA sequences from buccal swab and interdigital membrane/toe‐clip for all individuals. The differences in the coding of AFLP markers between the tissues were similar to those reported for replicas of the same type of sample in similar analyses in other species of amphibians. In conclusion, the use of buccal swabs is a trustworthy and inexpensive method to obtain DNA for mitochondrial and nuclear sequencing and AFLP analyses. Given the types of markers evaluated, buccal swabs may be used for phylogenetic, phylogeographic and population genetic studies, even in small amphibians (<33 mm).  相似文献   

11.
12.
A rapid, sensitive and visual loop‐mediated isothermal amplification (LAMP) method for detecting Acidovorax citrulli in cucurbit seed was developed in this study. The LAMP primers were designed to recognize the non‐ribosomal peptide synthetase (NRPS) gene (locus tag: Aave_4658) from A. citrulli. The LAMP assay was conducted at 64°C in 1 hr with calcein as an indicator. The sensitivity and specificity of the LAMP assay were further compared with those of a conventional polymerase chain reaction (PCR). The LAMP assay is highly specific to A. citrulli, and no cross‐reaction was observed with other bacterial pathogen. The sensitivity of the LAMP assay was 100‐fold higher than that of conventional PCR with a detection limit of 1 pg of genomic DNA. Using the LAMP assay, 7 of 12 cantaloupe seedlots collected from Xinjiang province were determined to be positive for A. citrulli. In contrast, only 2 of 12 seedlots showed positive for the pathogen with conventional PCR. Moreover, A. citrulli was detected in 100% of artificially infested seedlots with 0.01% infestation or greater. Our results demonstrated that the LAMP assay was simple, visual and sensitive for detecting A. citrulli, especially in seed health testing. Hence, this method has great potential application in routine detecting seed‐borne pathogens and reducing the risk of epidemics.  相似文献   

13.
Rice bakanae is an important disease that causes serious rice production loss worldwide. We describe a new method for rapid diagnosis of rice bakanae caused by Fusarium fujikuroi and F. proliferatum, based on loop‐mediated isothermal amplification (LAMP) assays. After screening, primers were selected to target FusariumDNA sequences, that is, the intergenic spacer (IGS) region of the nuclear ribosomal operon and reductase‐coding region (RED1) in F. fujikuroi and F. proliferatum, respectively. Both LAMP assays efficiently amplified target genes in 70 min at 62°C. A colour change from purple to sky blue (visible to the unaided eye) was observed in the presence of the DNA of the targeted pathogens only, by adding hydroxynaphthol blue to the reaction system prior to amplification. The minimum of genomic DNA needed in the assays was 67 and 346 pg/μl for F. fujikuroi and F. proliferatum, respectively. Using the two assays described here, we successfully and rapidly diagnosed suspected diseased rice plant and seed samples collected from Jiangsu Province.  相似文献   

14.
Phytophthora nicotianae is a phytopathogenic oomycete with a wide host range and worldwide distribution. Rapid detection and diagnosis at the early stages of disease development are important for the effective control of P. nicotianae. In this study, we designed a simple and rapid loop‐mediated isothermal amplification (LAMP)‐based detection method for P. nicotianae. We tested three DNA extraction methods and selected the Kaneka Easy DNA Extraction Kit version 2, which is rapid and robust for LAMP‐based detection. The designed primers were tested using mycelial DNA from 35 species (81 isolates) of Phytophthora, 12 species (12 isolates) of Pythium, one isolate of Phytopythium and one isolate each from seven other soil‐borne pathogens. All of the 42 P. nicotianae isolates were detected by these primers, and no other isolates gave positive results. Three isolates were tested for the sensitivity of the reaction, and the lowest amounts of template DNA that could be detected were 10 fg for two isolates and 1 fg for the third. The target was detected within 25 min in all tested samples, including DNA extracted from both inoculated and naturally infected plants. In contrast, PCR assays with P. nicotianae‐specific primers failed or showed weakened detection in several samples. Thus, we found that the rapid DNA extraction and LAMP assay methods developed in this study can be used to detect P. nicotianae with high sensitivity, specificity and stability.  相似文献   

15.
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology‐dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock‐out mutants in RAD51B, one of the Rad51 paralogs of Athaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B‐dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double‐stranded breaks (measured as γ‐H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S‐phase, and is ATM‐independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non‐transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double‐stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single‐stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.  相似文献   

16.
We report a rapid diagnosis of soya bean (Glycine max L.) root rot caused by Fusarium culmorum, using a loop‐mediated isothermal amplification (LAMP) assay. We used the CYP51C gene sequence to design LAMP assay primers specific for F. culmorum. The LAMP assay amplified the target gene efficiently in 60 min at 63°C. The sensitivity of the assay was 100 pg/μl of genomic DNA. Among the tested soya bean pathogens, a positive colour (sky blue) was only observed in the presence of F. culmorum with the addition of hydroxynaphthol blue (HNB) dye prior to amplification, whereas other species isolates showed no colour change. Suspected diseased soya bean samples collected in the field from Jiangsu, Shandong and Anhui provinces and Beijing were diagnosed successfully using the LAMP assay reported here. This study provides a new and readily available method for rapid diagnosis of soya bean root rot caused by F. culmorum.  相似文献   

17.
Amino acid changes in mitochondrial (mt) oxidative phosphorylation (OXPHOS) genes have been suggested as a key adaptation to environmental variation. Here, we analyzed 416 sequences of ATPase synthase 6 (MT‐ATP6) and NADH dehydrogenase 2 (MT‐ND2) in 22 different hare (Lepus) species from across a wide range of habitats and climates. We used site‐ and branch‐based methods to test for positive selection on specific codons and lineages. We found four codons in MT‐ATP6 and five in MT‐ND2 under positive selection, affecting several species lineages. We investigated the association of protein variants at each locus with climate zone, using multinomial generalized linear models (glm), including species, regions, historical introgression events, and the co‐occurring protein variant at the other locus as additional explanatory variables. A significant climate effect as based on the “Köppen climate classification” was observed for MT‐ND2 protein variants as translated from our nucleotide sequences. Moreover, MT‐ND2 protein variants were significantly affected by the co‐occurring MT‐ATP6 protein variant in the same mtDNA molecule. Contrary to the expectation for non‐recombining mitochondrial DNA molecules, the presence of an evolutionarily relatively ancestral protein variant at one locus was associated with a relatively derived protein at the other locus in the same mitochondrial molecule, respectively. The relative evolutionary status of a protein variant was evaluated according to its positions relative to the respective out‐group protein variant in a network analysis of nucleotide sequences. All our results suggest a complex effect of various climatic parameters acting on multiple mtOXPHOS genes in a co‐adaptive way, favoring combinations of ancestral and derived variants.  相似文献   

18.
19.
20.
Sex identification provides important information for ecological and evolutionary studies, as well as benefiting snake conservation management. Traditional methods such as cloacal probing or cloacal popping are counterproductive for sex identification concerning very small species, resulting in difficulties in the management of their breeding programs. In this study, the nucleotide sequences of gametologous genes (CTNNB1 and WAC genes) were used for the development of molecular sexing markers in caenophidian snakes. Two candidate markers were developed with the two primer sets, and successfully amplified by a single band on the agarose gel in male (ZZ) and two bands, differing in fragment sizes, in female (ZW) of 16 caenophidian snakes for CTNNB1 and 12 caenophidian snakes for WAC. Another candidate marker was developed with the primer set to amplify the specific sequence for CTNNB1W homolog, and the PCR products were successfully obtained in a female‐specific 250‐bp DNA bands. The three candidate PCR sexing markers provide a simple sex identification method based on the amplification of gametologous genes, and they can be used to facilitate effective caenophidian snake conservation and management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号