首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins—constrained by sequence, topology, size, and function—simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.  相似文献   

2.
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.  相似文献   

3.
The cylindrical chaperonin GroEL and its lid-shaped cofactor GroES of Escherichia coli have an essential role in assisting protein folding by transiently encapsulating non-native substrate in an ATP-regulated mechanism. It remains controversial whether the chaperonin system functions solely as an infinite dilution chamber, preventing off-pathway aggregation, or actively enhances folding kinetics by modulating the folding energy landscape. Here we developed single-molecule approaches to distinguish between passive and active chaperonin mechanisms. Using low protein concentrations (100 pM) to exclude aggregation, we measured the spontaneous and GroEL/ES-assisted folding of double-mutant maltose binding protein (DM-MBP) by single-pair fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We find that GroEL/ES accelerates folding of DM-MBP up to 8-fold over the spontaneous folding rate. Accelerated folding is achieved by encapsulation of folding intermediate in the GroEL/ES cage, independent of repetitive cycles of protein binding and release from GroEL. Moreover, photoinduced electron transfer experiments provided direct physical evidence that the confining environment of the chaperonin restricts polypeptide chain dynamics. This effect is mediated by the net-negatively charged wall of the GroEL/ES cavity, as shown using the GroEL mutant EL(KKK2) in which the net-negative charge is removed. EL(KKK2)/ES functions as a passive cage in which folding occurs at the slow spontaneous rate. Taken together our findings suggest that protein encapsulation can accelerate folding by entropically destabilizing folding intermediates, in strong support of an active chaperonin mechanism in the folding of some proteins. Accelerated folding is biologically significant as it adjusts folding rates relative to the speed of protein synthesis.  相似文献   

4.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

5.
The head protein of T4 bacteriophage requires the GroEL chaperonin for its insertion into a growing T4 head. Hundreds of thousands of copies of this protein must pass through the chaperonin in a limited time later in infection, indicating that the protein must use GroEL very efficiently and may contain sequences that bind tightly to GroEL. We show that green fluorescent protein (GFP) fused to the N terminus of the head protein can fold at temperatures higher than those at which the GFP protein can fold well by itself. We present evidence that this folding is promoted by the strong binding of N-terminal head protein sequences to GroEL. This binding is so strong that some fusion proteins can apparently deplete the cell of the GroEL needed for other cellular functions, altering the cellular membranes and slowing growth.  相似文献   

6.
A significant proportion of bacteria express two or more chaperonin genes. Chaperonins are a group of molecular chaperones, defined by sequence similarity, required for the folding of some cellular proteins. Chaperonin monomers have a mass of c . 60 kDa, and are typically found as large protein complexes containing 14 subunits arranged in two rings. The mechanism of action of the Escherichia coli GroEL protein has been studied in great detail. It acts by binding to unfolded proteins and enabling them to fold in a protected environment where they do not interact with any other proteins. GroEL can assist the folding of many proteins of different sizes, sequences, and structures, and homologues from many different bacteria can functionally replace GroEL in E. coli . What then are the functions of multiple chaperonins? Do they provide a mechanism for cells to increase their general chaperoning ability, or have they become specialized to take on specific novel cellular roles? Here I will review the genetic, biochemical, and phylogenetic evidence that has a bearing on this question, and show that there is good evidence for at least some specificity of function in multiple chaperonin genes.  相似文献   

7.
All living organisms contain a unique class of molecular chaperones called 60?kDa heat shock proteins (HSP60 – also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus – MRSA). Intriguingly, during our studies we found that three known antibiotics – suramin, closantel, and rafoxanide – were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.  相似文献   

8.
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co‐chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo‐oligomers and all possible other chloroplast co‐chaperonin hetero‐oligomers are functional, but only that consisting of CPN11/20/23‐CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo‐EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co‐chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero‐oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero‐oligomerization, the chloroplast co‐chaperonin CPN11/20/23 forms seven GroES‐like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof‐forming domains in the dome‐shaped CPN11/20/23 co‐chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.  相似文献   

9.
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.  相似文献   

10.
Mechanisms of protein folding   总被引:11,自引:0,他引:11  
The strong correlation between protein folding rates and the contact order suggests that folding rates are largely determined by the topology of the native structure. However, for a given topology, there may be several possible low free energy paths to the native state and the path that is chosen (the lowest free energy path) may depend on differences in interaction energies and local free energies of ordering in different parts of the structure. For larger proteins whose folding is assisted by chaperones, such as the Escherichia coli chaperonin GroEL, advances have been made in understanding both the aspects of an unfolded protein that GroEL recognizes and the mode of binding to the chaperonin. The possibility that GroEL can remove non-native proteins from kinetic traps by unfolding them either during polypeptide binding to the chaperonin or during the subsequent ATP-dependent formation of folding-active complexes with the co-chaperonin GroES has also been explored.  相似文献   

11.
The GroEL/GroES chaperonin system of Escherichia coli forms a nano-cage allowing single protein molecules to fold in isolation. However, as the chaperonin can also mediate folding independently of substrate encapsulation, it remained unclear whether the folding cage is essential in vivo. To address this question, we replaced wild-type GroEL with mutants of GroEL having either a reduced cage volume or altered charge properties of the cage wall. A stepwise reduction in cage size resulted in a gradual loss of cell viability, although the mutants bound non-native protein efficiently. Strikingly, a mild reduction in cage size increased the yield and the apparent rate of green fluorescent protein folding, consistent with the view that an effect of steric confinement can accelerate folding. As shown in vitro, the observed acceleration of folding was dependent on protein encapsulation by GroES but independent of GroES cycling regulated by the GroEL ATPase. Altering the net-negative charge of the GroEL cage wall also strongly affected chaperonin function. Based on these findings, the GroEL/GroES compartment is essential for protein folding in vivo.  相似文献   

12.
Chaperonin GroEL is an essential molecular chaperone that assists protein folding in the cell. With the aid of cochaperonin GroES and ATP, double ring-shaped GroEL encapsulates non-native substrate proteins inside the cavity of the GroEL-ES complex. Although extensive studies have revealed the outline of GroEL mechanism over the past decade, central questions remain: What are the in vivo substrate proteins? How does GroEL encapsulate the substrates inside the cavity in spite of an apparent entropic difficulty? Is the folding inside the GroEL-ES cavity the same as bulk spontaneous folding? In this review I summarize the recent progress on in vivo and in vitro aspects of GroEL. In particular, emerging evidence shows that the substrate protein itself influences the chaperonin GroEL structure and reaction cycle. Finally I propose the mechanistic similarity between GroEL and kinesin, a molecular motor that moves along a microtubule in an ATP-dependent manner.  相似文献   

13.
Radford SE 《Cell》2006,125(5):831-833
The chaperonin GroEL has been thought of as an important but passive player in protein folding, providing an encapsulated environment that allows folding to proceed unimpaired by aggregation. In this issue, Tang et al. (2006) redesign the GroEL central cavity and show that the chaperonin cage can alter the rate of folding and, for some proteins, could even alter the folding mechanism.  相似文献   

14.
Human mitochondrial Hsp60 (mtHsp60) is a class I chaperonin, 51% identical in sequence to the prototypical E. coli chaperonin GroEL. mtHsp60 maintains the proteome within the mitochondrion and is associated with various neurodegenerative diseases and cancers. The oligomeric assembly of mtHsp60 into heptameric ring structures that enclose a folding chamber only occurs upon addition of ATP and is significantly more labile than that of GroEL, where the only oligomeric species is a tetradecamer. The lability of the mtHsp60 heptamer provides an opportunity to detect and visualize lower-order oligomeric states that may represent intermediates along the assembly/disassembly pathway. Using cryo-electron microscopy we show that, in addition to the fully-formed heptamer and an “inverted” tetradecamer in which the two heptamers associate via their apical domains, thereby blocking protein substrate access, well-defined lower-order oligomeric species, populated at less than 6% of the total particles, are observed. Specifically, we observe open trimers, tetramers, pentamers and hexamers (comprising ∼4% of the total particles) with rigid body rotations from one subunit to the next within ∼1.5–3.5° of that for the heptamer, indicating that these may lie directly on the assembly/disassembly pathway. We also observe a closed-ring hexamer (∼2% of the particles) which may represent an off-pathway species in the assembly/disassembly process in so far that conversion to the mature heptamer would require the closed-ring hexamer to open to accept an additional subunit. Lastly, we observe several classes of tetramers where additional subunits characterized by fuzzy electron density are caught in the act of oligomer extension.  相似文献   

15.
The chaperonin containing TCP-1 (CCT, also known as TRiC) is the only member of the chaperonin family found in the cytosol of eukaryotes. Like other chaperonins, it assists the folding of newly synthesised proteins. It is, however, unique in its specificity towards only a small subset of non-native proteins. We determined two crystal structures of mouse CCTgamma apical domain at 2.2 A and 2.8 A resolution. They reveal a surface patch facing the inside of the torus that is highly evolutionarily conserved and specific for the CCTgamma apical domain. This putative substrate-binding region consists of predominantly positively charged side-chains. It suggests that the specificity of this apical domain towards its substrate, partially folded tubulin, is conferred by polar and electrostatic interactions. The site and nature of substrate interaction are thus profoundly different between CCT and its eubacterial homologue GroEL, consistent with their different functions in general versus specific protein folding assistance.  相似文献   

16.
Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results support the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.  相似文献   

17.
Current treatments for Mycobacterium tuberculosis infections require long and complicated regimens that can lead to patient non-compliance, increasing incidences of antibiotic-resistant strains, and lack of efficacy against latent stages of disease. Thus, new therapeutics are needed to improve tuberculosis standard of care. One strategy is to target protein homeostasis pathways by inhibiting molecular chaperones such as GroEL/ES (HSP60/10) chaperonin systems. M. tuberculosis has two GroEL homologs: GroEL1 is not essential but is important for cytokine-dependent granuloma formation, while GroEL2 is essential for survival and likely functions as the canonical housekeeping chaperonin for folding proteins. Another strategy is to target the protein tyrosine phosphatase B (PtpB) virulence factor that M. tuberculosis secretes into host cells to help evade immune responses. In the present study, we have identified a series of GroEL/ES inhibitors that inhibit M. tuberculosis growth in liquid culture and biochemical function of PtpB in vitro. With further optimization, such dual-targeting GroEL/ES and PtpB inhibitors could be effective against all stages of tuberculosis – actively replicating bacteria, bacteria evading host cell immune responses, and granuloma formation in latent disease – which would be a significant advance to augment current therapeutics that primarily target actively replicating bacteria.  相似文献   

18.
The folding of alpha- and beta-tubulin requires three proteins: the heteromeric TCP-1-containing cytoplasmic chaperonin and two additional protein cofactors (A and B). We show that these cofactors participate in the folding process and do not merely trigger release, since in the presence of Mg-ATP alone, alpha- and beta-tubulin target proteins are discharged from cytoplasmic chaperonin in a nonnative form. Like the prokaryotic cochaperonin GroES, which interacts with the prototypical Escherichia coli chaperonin GroEL and regulates its ATPase activity, cofactor A modulates the ATPase activity of its cognate chaperonin. However, the sequence of cofactor A derived from a cloned cDNA defines a 13-kD polypeptide with no significant homology to other known proteins. Moreover, while GroES functions as a heptameric ring, cofactor A behaves as a dimer. Thus, cofactor A is a novel cochaperonin that is structurally unrelated to GroES.  相似文献   

19.
GroEL and GroES form a chaperonin nano-cage for proteins up to approximately 60 kDa to fold in isolation. Here we explored the structural features of the chaperonin cage critical for rapid folding of encapsulated substrates. Modulating the volume of the GroEL central cavity affected folding speed in accordance with confinement theory. Small proteins (approximately 30 kDa) folded more rapidly as the size of the cage was gradually reduced to a point where restriction in space slowed folding dramatically. For larger proteins (approximately 40-50 kDa), either expanding or reducing cage volume decelerated folding. Additionally, interactions with the C-terminal, mildly hydrophobic Gly-Gly-Met repeat sequences of GroEL protruding into the cavity, and repulsion effects from the negatively charged cavity wall were required for rapid folding of some proteins. We suggest that by combining these features, the chaperonin cage provides a physical environment optimized to catalyze the structural annealing of proteins with kinetically complex folding pathways.  相似文献   

20.
The GroEL chaperonin has the ability to behave as an unfoldase, repeatedly denaturing proteins upon binding, which in turn can free them from kinetic traps and increase their folding rates. The complex formed by GroEL+GroES+ATP can also act as an infinite dilution cage, enclosing proteins within a protective container where they can fold without danger of aggregation. Controversy remains over which of these two properties is more critical to the GroEL/ES chaperonin's function. We probe the importance of the unfoldase nature of GroEL under conditions where aggregation is the predominant protein degradation pathway. We consider the effect of a hypothetical mutation to GroEL which increases the cycle frequency of GroEL/ES by increasing the rate of hydrolysis of GroEL-bound ATP. Using a simple kinetic model, we show that this modified chaperonin would be self-defeating: any potential reduction in folding time would be negated by an increase in time spent in the bulk, causing an increase in aggregation and a net decrease in protein folding yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号