首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Hypocotyls of 5-d-old etiolated soybean seedlings (Glycine max (L.) Merr. cv. Altona) were treated with (a) dithiothreitol (DTT) or one of the sulfhydryl-binding reagents N-ethylmaleimide (NEM), p-hydroxymercuribenzoate (PMB) und p-chloromercuribenzene sulfonic acid (PMBS), (b) one of the sulfhydryl reagents in combination with DTT, (c) sulfhydryl reagent subsequent to treatment with DTT, and (d) PMBS followed by DTT. Glyceollin was extracted 24 and 48 h after initiation of treatment. The order of decreasing glyceollin-eliciting activity was PMBSDTT>PMBNEM. Elicitor effectiveness of sulfhydryl reagents and their reactivity with either L-cysteine or sulfhydryl groups in soybean hypocotyls were not strictly correlated. Mixtures of sulfhydryl reagent and DTT, pretreatment of hypocotyls with DTT and subsequent application of either PMB or PMBS, as well as application of PMBS prior to DTT induced less glyceollin than sulfhydryl reagents alone. In contrast, such pretreatment did not appreciably alter glyceollin accumulation elicited by NEM. The results indicate that glyceollin synthesis can be regulated by interaction with sulfhydryl groups located mainly at the outer surface of the plasmalemma.Abbreviations DTT DL-dithiothreitol - NEM N-ethylmaleimide - PMB p-hydroxymercuribenzoate (sodium salt) - PMBS p-chloromercuribenzene sulfonic acid  相似文献   

2.
Leaves of Kalanchoë daigremontiana Hamet et Perr. at a photon flux density (PFD) above 220 mol·m–2s–1 (400–700 nm) or at leaf temperatures above 27.0 °C showed a rapid loss of rhythmicity, and a more or less pronounced damping-out of the endogenous circadian rhythm of CO2 exchange under continuous illumination. This rhythm was reinitiated after reduction of the PFD by 90–120 mol·m–2·s–1 or reduction of leaf temperature by 3.5–11.0 °C under otherwise unchanged external conditions. The reduction in the magnitude of the external control parameter of the Crassulacean acid metabolism (CAM) rhythm (i.e. PFD or leaf temperature) set the phase of the new rhythm. The maxima of CO2 uptake occurred about 5, 28, 51, 75 h after the reduction. Simulations with a CAM model under comparable conditions showed a similar behaviour. The influence of temperature on the endogenous CAM rhythm observed in K. daigremontiana in vivo could be simulated by incorporating into the model temperature-dependent switch modes for passive efflux of malate from the vacuole to the cytoplasm. Thus, the model indicates that tonoplast function plays an important role in regulation of the endogenous CAM rhythm in K. daigremontiana.Abbreviations CAM Crassulacean acid metabolism - PAR photosynthetically active radiation - PFD photon flux density This work was supported by a grant to F.B. and U.L. from Teilprojekt B5 in the Sonderforschungsbereich 199 of the Deutsche Forschungsgemeinschaft (Bonn, Germany) and by a grant to T. E. E. G. from the Sudienstiftung des deutschen Volkes (Bonn, Germany). Erika Ball is thanked for processing of time-course data for the analysis of Fourier spectra.  相似文献   

3.
N. Schilling  P. Dittrich 《Planta》1979,147(3):210-215
The degradation of starch by a protein fraction of Kalanchoë daigremontiana Hamet et Perrier, obtained by ammoniumsulfate precipitation (30–70%), was found to be catalyzed by -and -amylase (EC 3.2.1.1 and EC 3.2.1.2, respectively) and by starch phosphorylase (EC 2.4.1.1). The activity of these enzymes was determined by chromatographic analysis of the reaction products; separation and identification of -amylase was accomplished by heat-inactivation of -amylase and -glucosidase. When the interaction of amylolytic and phosphorolytic enzymes was comparatively studied, it was found that without inorganic phosphorus in the reaction mixture, 14C-starch was converted predominantly to maltose and glucose; supplementation with 1–10 mM orthophosphate (Pi) resulted in an increase in glucose-1-phosphate formation and a concomitant reduction of maltose production. Since the total volume of starch degradation remained approximately constant, Pi apparently inhibits -amylase (Ki about 3 mM Pi). Thus, free Pi in the cell participates in the regulation of starch catabolism, serving as a substrate for starch phosphorylase while simultaneously reducing the production of maltose. With respect to glucan synthesis, adenosinediphosphoglucose--1,4-glucosyltransferase (EC 2.4.1.22), maltose phosphorylase and maltoseglucosyltransferase were also found to be active. The last-named enzyme catalyzes an exchange between dextrins and is considered to provide primer carbohydrates for the synthesis of polyglucans.Abbreviations ADPG adenosinediphosphoglucose - G1P glucose-1-phosphate - PEG polyethylenglycol - PEP phosphoenolpyruvate - Pi orthophosphate  相似文献   

4.
Wyka TP  Bohn A  Duarte HM  Kaiser F  Lüttge UE 《Planta》2004,219(4):705-713
In continuous light, leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier exhibit a circadian rhythm of CO2 uptake, stomatal conductance and leaf-internal CO2 pressure. According to a current quantitative model of CAM, the pacemaking mechanism involves periodic turgor-related tension and relaxation of the tonoplast, which determines the direction of the net flux of malate between the vacuole and the cytoplasm. Cytoplasmic malate, in turn, through its inhibitory effect on phosphoenolpyruvate carboxylase, controls the rate of CO2 uptake. According to this mechanism, when the accumulation of malate is disrupted by removing CO2 from the ambient air, the induction of a phase delay with respect to an unperturbed control plant is expected. First, using the mathematical model, such phase delays were observed in numerical simulations of three scenarios of CO2 removal: (i) starting at a trough of CO2 uptake, lasting for about half a cycle (ca. 12 h in vivo); (ii) with the identical starting phase, but lasting for 1.5 cycles (ca. 36 h); and (iii) starting while CO2 increases, lasting for half a cycle again. Applying the same protocols to leaves of K. daigremontiana in vivo did not induce the predicted phase shifts, i.e. after the end of the CO2 removal the perturbed rhythm adopted nearly the same phase as that of the control plant. Second, when leaves were exposed to a nitrogen atmosphere for three nights prior to onset of continuous light to prevent malate accumulation, a small, 4-h phase advance was observed instead of a delay, again contrary to the model-based expectations. Hence, vacuolar malic acid accumulation is ruled out as the central pacemaking process. This observation is in line with our earlier suggestion [T.P. Wyka, U. Lüttge (2003) J Exp Bot 54:1471–1479] that in extended continuous light, CO2 uptake switches gradually from a CAM-like to a C3-like mechanism, with oscillations of the two CO2 uptake systems being tightly coordinated. It appears that the circadian rhythm of gas exchange in this CAM plant emerges from one or several devices that are capable of generating temporal information in a robust manner, i.e. they are protected from even severe metabolic perturbations.Abbreviations CAM Crassulacean acid metabolism - cia Ratio of mesophyll CO2 concentration to external CO2 concentration - JC Rate of carbon dioxide uptake - JW Transpiration rate - gW Stomatal conductance - LL Continuous light conditions - PEPC Phosphoenolpyruvate carboxylase - Rubisco d-Ribulose-1,5-bisphosphatecarboxylase/oxygenase - Effective quantum yield of photosystem II  相似文献   

5.
6.
Summary

The effects of narcosis and of telemetry transmitter implantation on core temperature and locomotor activity were investigated in female laboratory mice of various age (3, 15 and 52 weeks old). Following surgery a transient hypothermia was observed. The body temperatures measured 30 min after beginning of narcosis were lower in juvenile and in presenile mice (29.6° ±0.8°C resp. 30.0° ±0.2°C) than in adult animals (31.9° ±0.3°C). The following temperature increase was fastest in juvenile mice. Normal body temperature was reached after 6h 20’ already. Adult and presenile mice needed 8h 30’ resp. 7h 30’. The temperature increase seemed to be independent from activity behaviour of the animals. No substantial differences could be obtained whether the transmitters had room or body temperature before implantation and whether the animals were warmed after surgery by an infrared bulb or not. Probably, the temperature increase depended mainly on the elimination rate of the drug.

Normal circadian core temperature and activity rhythms reappeared on average within 5–6 days in juvenile mice and a little faster in adult (4–5 days) as well as in presenile ones (3–4 days). However, interindividual differences in recovery time were more pronounced than age‐dependent variations.

Circadian core temperature and activity patterns were quite similar in all three age classes investigated. Ontogenetic differences concern, besides changes in daily mean values, mainly a temperature amplitude increasing with age, as well as a high percentage of ultradian components in the activity pattern of juvenile mice compared to older ones.

Telemetry systems are widely used for long‐term measurements of core temperature in laboratory animals (Clement et al., 1989; Refinetti and Menaker, 1992). In our investigations of ontogenetic changes of the circadian temperature and activity rhythms in mice we used an integrated telemetry and data acquisition system (Dataquest, Data Sciences Inc., USA). It comprises implantable wireless transmitters, telemetry receivers, a consolidation matrix and a data acquisition system. The aim of a preliminary study was to analyse the effects of narcosis and transmitter implantation. The time required to recover normal values of body temperature and of locomotor activity as well as normal circadian rhythms was determined, considering also ontogenetic variations.  相似文献   

7.
Circadian rhythms of flashing and glow were recorded simultaneously in Gonyaulax polyedra by determining maximum and minimum light emission at each measured interval of 28 sec. In constant light, the two rhythms in some cases showed different period lengths (tau), the glow rhythm being up to 1 hr shorter than the flashing rhythm. Lower temperatures shortened the tau of the glow rhythm more than that of the flashing rhythm. The amplitude of the flashing rhythm decreased when the temperature was increased from 15 degrees C to 25 degrees C, whereas that of the glow rhythm was increased. These results may indicate that the two rhythms are controlled by two separate oscillators.  相似文献   

8.
Effects of high night temperature on the lipid and protein compositions in the tonoplasts isolated from the leaves of two Crassulacean acid metabolism (CAM) plants, Ananas comosus (pineapple) and Kalanchoë pinnata were studied. The results showed that the phospholipids/protein ratios in the tonoplasts isolated from pineapple and K. pinnata leaves decreased from 1.82 to 1.21 and 2.63 to 1.50, respectively, as the night temperature increased from 20 to 37 °C. Under high night temperature, relative amount of total unsaturated fatty acids in K. pinnata was increased by 6 %, which was mainly caused by increased C18:2 and C18:3, whereas unsaturated fatty acids, C18:2 and C18:3 in pineapple did not show significant change. The distribution patterns of tonoplast proteins in the two CAM species were different between normal and high night temperature and in K. pinnata, especially those with molecular mass ranging from 66.2 to 97.4 KDa. Compared with normal night temperature, more proteins were found in pineapple, but no difference was found in K. pinnata. Thus, above result indicated that the pineapple tonoplasts could keep higher rigidity under high night temperatures compared to the K. pinnata.  相似文献   

9.
14CO2 was applied repeatedly at 3- to 6-h intervals toKalanchoë daigremontiana leaves during continuous light of differing irradiances. The circadian rhythm in net CO2 uptake in gasexchange measurements and its disappearance at high irradiances was confirmed by oscillating rates of14CO2 incorporation. At 10–30 W m-2 a markedly circadian oscillation in the14CO2-uptake rate was measured; with increasing energy fluence rate the oscillation levelled off at a constant high uptake rate. The labelling patterns obtained during the 10 min of14CO2 fixation indicated that the rhythm of CO2 exchange is the consequence of a rhythmic behaviour in the C4 pathway of CO2 fixation. During the mininum of14CO2 uptake no C4 products were labelled; however, substantial amounts of label were transferred to C4 products during the peaks of14CO2 uptake. Metabolism of C3 and C4 products was also studied in pulsechase experiments at different points of the circadian cycle. In bright light (100 W m-2), when the14CO2 uptake was constantly high, the transfer of label into C4 products (malic acid) was high in spite of the fact that the malate pool is known to be reduced to a permanently low level under these conditions. This led us to the conclusion that it is not the capacity of the phosphoenolpyruvatecarboxylase-mediated CO2 fixation but rather the storage of malic acid in the vacuole that is disturbed under bright-light conditions when the circadian oscillation levelled off.Abbreviations CAM Crassulacean acid metabolism - LL continuous light - PEP phosphoenolpyruvate  相似文献   

10.
During the endogenous circadian rhythm of carbon dioxide uptake in continuous light by a Crassula cean acid metabolism plant, Kalancho? daigremontiana, the two carboxylating enzymes, phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco), are active simultaneously, although, until now, only the role of PEPC in generating the rhythm has been acknowledged. According to the established model, the rhythm is primarily regulated at the PEPC activity level, modulated by periodic compartmentation of its inhibitor, malate, in the vacuole and controlled by tension/relaxation of the tonoplast. However, the circadian accumulation of malic acid (the main indicator of PEPC activity) dampened significantly within the first few periods without affecting the rhythm's amplitude. Moreover, the amount of malate accumulated during a free-running oscillation was several-fold lower than the amount expected if PEPC were the key carboxylating enzyme, based on a 1:1 stoichiometry of CO(2) and malate. Together with the observation that rates of CO(2) uptake under continuous light were higher than in darkness, the evidence shows that C(3) carboxylation greatly contributes to the generation of rhythmic CO(2) uptake in continuous light in this 'obligate' CAM plant. Because the shift from predominantly CAM to predominantly C(3) carboxylation is smooth and does not distort the trajectory of the rhythm, its control probably arises from a robust network of oscillators, perhaps also involving stomata.  相似文献   

11.
12.
When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalanchoë.  相似文献   

13.
Chirality of pollutants—effects on metabolism and fate   总被引:6,自引:0,他引:6  
In most cases, enantiomers of chiral compounds behave differently in biochemical processes. Therefore, the effects and the environmental fate of the enantiomers of chiral pollutants need to be investigated separately. In this review, the different fates of the enantiomers of chiral phenoxyalkanoic acid herbicides, acetamides, organochlorines, and linear alkylbenzenesulfonates are discussed. The focus lies on biological degradation, which may be enantioselective, in contrast to non-biotic conversions. The data show that it is difficult to predict which enantiomer may be enriched and that accumulation of an enantiomer is dependent on the environmental system, the species, and the organ. Racemization and enantiomerization processes occur and make interpretation of the data even more complex. Enantioselective degradation implies that the enzymes involved in the conversion of such compounds are able to differentiate between the enantiomers. Enzyme pairs have evolved which exhibit almost identical overall folding. Only subtle differences in their active site determine their enantioselectivities. At the other extreme, there are examples of non-homologous enzyme pairs that have developed through convergent evolution to enantioselectively turn over the enantiomers of a chiral compound. For a better understanding of enantioselective reactions, more detailed studies of enzymes involved in enantioselective degradation need to be performed.  相似文献   

14.
Nielsen AH  Olsen CE  Møller BL 《Phytochemistry》2005,66(24):2829-2835
Kalancho? blossfeldiana varieties with orange, pink, red and magenta flowers were found to contain 3,5-O-beta-D-diglucosides of pelargonidin, cyanidin, peonidin, delphinidin, petunidin and malvidin. Pink, red and magenta varieties contained relatively high amounts of quercetin based flavonols. Four distinct quercetin flavonols were identified, namely quercetin 3-O-beta-D-glucoside and three that were quercetin 3-O-alpha-L-rhamnoside based, with either glucose, xylose or arabinose attached to position 2 of the rhamnose. In addition, the presence of at least three kaempferol based diglycosides was suggested from LC-MS analyses. Orange varieties contained very low amounts of flavonol co-pigments and of delphinidin derivatives. The flower extracts of the varieties 'Diva' (magenta) and 'Molly' (red) had identical anthocyanin ratios but differed significantly in flavonol content. The magenta variety contained four times as much quercetin relative to anthocyanidin as the red variety. This difference was mainly due to a larger content of quercetin 3-O-(2'-O-beta-D-glucopyranosyl-alpha-L-rhamnopyranoside). Based on pigment and co-pigment analyses, approaches for molecular breeding towards blue flower colour are discussed.  相似文献   

15.
J. A. C. Smith  U. Lüttge 《Planta》1985,163(2):272-282
A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats.Abbreviation and symbols CAM Crassulacean acid metabolism - P turgor pressure - osmotic pressure - water potential Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday  相似文献   

16.
The crassulacean acid metabolism (CAM) plant Kalancho? daigremontiana Hamet et Perrier de la Bathie shows an endogenous circadian rhythm of net CO2 exchange (J CO2 ) under constant conditions in continuous light. Previous studies have shown, however, that above a certain threshold temperature J CO2 changes from rhythmic to arrhythmic behaviour and that this is reversible when the temperature is lowered again. It is now demonstrated here, that this re-initiation of rhythmic J CO2 from arrhythmicity needs a sufficiently strong temperature signal as defined by its abruptness. Rhythmicity reappears only if the temperature is reduced rather rapidly. If the temperature is reduced slowly then arrhythmicity is retained even at a low temperature level which normally would allow rhythmicity. Under these circumstances, however, a distinct temperature increase followed by an abrupt temperature decrease immediately elicits regular oscillations of J CO2 at this lower temperature. We suggest that the strong temperature signals function as a definite synchronizer (“zeitgeber”) which synchronizes different cells and/or different leaf areas which remain desynchronized after application of only slow temperature changes. This is further supported by Fourier transform analyses, revealing a harmonic structure of the superficially arrhythmic time series of J CO2 after application of slow temperature reductions. This conclusion adds a spatial dimension to the otherwise purely time-dependent rhythmicity and arrhythmicity of J CO2 in CAM. Received: 18 May 1998 / Accepted: 30 June 1998  相似文献   

17.
Farazdaghi H 《Bio Systems》2011,103(2):265-284
Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg2+, and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO2 and/or O2 and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO2 levels such as CO2 compensation point, or RuBP regeneration-limited at high CO2. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO2 compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at night, it leads to progressively negative daily CO2 fixation with no possibility of oxygenic life on the planet. The Rubisco-limited theory at low CO2 also contradicts all experimental evidence for low substrate reactions, and for all known enzymes, Rubisco included.  相似文献   

18.
19.
Summary The carbon isotope compositions of samples of Kalanchoë species collected at the natural stands in Madagascar were determined. The results suggest that all species of the genus Kalanchoë are capable of crassulacean acid metabolism. The observed 13C values cover the whole range from –10 to –30. This high diversity of the 13C values was found among the species of the genus as well as, in certain cases, within a single species. This suggest that the CAM patterns in Kalanchoë are generally very flexible. The 13C values show a clear correlation with the climate of the habitats from where the samples derived. Values indicative of CO2 fixation taking place exclusively during the night were found in the dry regions of Madagascar, whereas 13C values indicative of mixed CO2 fixation during night and day or of CO2 fixation entirely during the day are distributed in the humid zones.  相似文献   

20.
Several members of the Kalanchoë genus are popular as ornamental plants. Cross-breeding and wide hybridisation are essential to continuously introduce novel traits into cultivated plant material. This study aimed to identify the major factors related to the stigma affecting cross-pollination in the Kalanchoë blossfeldiana. Pollen tube growth after pollination of K. blossfeldiana ‘Jackie’ and ‘Reese’ was examined at different stigma developmental stages. Five distinct developmental stages were identified based on changes in morphology and activity of stigmatic peroxidase. After reciprocal pollination at the five stigma developmental stages, fluorescence microscopy was used to estimate the number of pollen tubes in situ. Both cultivars had receptive stigmas from stage I to IV, which concurred with the continuous expansion of the stigma covered with exudates. No pollen tube growth was observed at stage V for both cultivars. The number of pollen tubes was significantly higher in carpels pollinated at stage III, characterized by loose arrangement of the papillae and maximal amount of exudates, compared to all other developmental stages. Stigmas showing drying exudates and absence of peroxidase exhibited a relatively decreased number of pollen tubes in situ. No pollen tubes germinated on wilting stigmas. The arrangement of the papillae, the presence of exudates and peroxidase activity affected the number of pollen tubes in cross-pollination of K. blossfeldiana cultivars ‘Jackie’ and ‘Reese’. These results will help breeders to better select the optimal time for effective pollination. The findings may be applicable for other cultivars of K. blossfeldiana and relevant for different species of Kalanchoë.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号