首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV)was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Competitive PCR showed that the viral level was approximately 104 copies/mg tissue in the dilution of gill homogenate of WSSV-infected crayfish at the detection limit of dot-blot assay.Our results suggest that dot-blot analysis with anti-rVP28 MAb could rapidly and sensitively detect WSSV at the early stages of WSSV infection.  相似文献   

3.
The gene encoding the VP28 envelope protein of White spot syndrome virus (WSSV) was cloned into expression vector pET-30a and transformed into the Escherichia coli strain BL21.After induction,the recombinant VP28 (rVP28) protein was purified and then used to immunize Balb/c mice for monoclonal antibody (MAb) production.It was observed by immuno-electron microscopy the MAbs specific to rVP28 could recognize native VP28 target epitopes of WSSV and dot-blot analysis was used to detect natural WSSV infection.Co...  相似文献   

4.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immun-ological diagnosis methods for WSSV infection.  相似文献   

5.
Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA   总被引:8,自引:0,他引:8  
RNA interference (RNAi) has been shown to inhibit viral replication in some animals and plants. Whether the RNAi is functional in shrimp remains to be demonstrated. In vitro transcribed dsRNAs of YHV helicase, polymerase, protease, gp116, and gp64 were transfected into shrimp primary cell culture and found to inhibit YHV replication. dsRNA targeted to nonstructural genes (protease, polymerase, and helicase) effectively inhibited YHV replication. Those targeted structural genes (gp116 and gp64) were the least effective. These findings are the first evidence that RNAi-mediated gene silencing is operative in shrimp cells. This could be a powerful tool for studying gene function and to develop effective control of viral infection in shrimp.  相似文献   

6.
对虾白斑综合征病毒(white spot syndrome virus,WSSV)是一种能够感染虾类并且造成其大面积死亡的环状双链DNA病毒。WSSV有多种分离株,其毒力有所差异。从克氏原螯虾(Procambarus clarkii)中分离得到1株WSSV新分离株WSSV-CN-Pc,其毒力尚不清楚。本研究采用肌肉注射和经口注射的方法,以WSSVTW型作为阳性对照,分别对克氏原螯虾(P.clarkii)和罗氏沼虾(Macrobrachium rosenbergii)进行活体实验。实验结果显示:肌肉注射WSSV-CN-Pc和WSSV-TW的克氏原螯虾均在第6天出现100%的死亡;罗氏沼虾在肌肉注射WSSV-TW后未出现死亡,但在注射WSSV-CN-Pc后的第9天死亡率达100%。经口注射WSSV-CN-Pc和WSSV-TW的克氏原螯虾均在第16天出现100%的死亡;罗氏沼虾经口注射WSSV-CN-Pc后的第19天死亡率为100%,但注射WSSV-TW的实验组并未出现死亡。结果表明,对于克氏原螯虾,WSSV-CN-Pc具有和WSSV-TW相似的毒力,而对罗氏沼虾存在明显的毒力差异。提示克氏原螯虾是WSSV传播途径中的重要因素。  相似文献   

7.
Recent studies showed that white spot syndrome virus(WSSV)isolates from different geographic locations share a high genetic similarity except the variable regions in ORF23/24 and ORF14/15,and variable number of tandem repeats(VNTR)within ORF94.In this study,genotyping was performed according to these three variable regions among WSSV isolates collected during 1998/1999 from Southern China.These WSSV isolates contain a deletion of 1168,5657,5898,9316 and 11093 bp,respectively in the variable region ORF23/24compared with WSSV-TW,and a deletion of 4749 or 5622 bp in the variable region ORF14/15 relative to TH-96-II.Four types of repeat units(RUs)(6,8,9 and 13 RUs)in ORF94 were detected in these isolates,with the shortest 6 RUs as the most prevalent type.Our results provide important information for a better understanding of the spatio-temporal transmission mode and the WSSV genetic evolution lineage.  相似文献   

8.
根据一些病毒的DNA多聚酶氨基酸序列中特有的保守序列VYGDTD设计的简并寡核苷酸 ,经地高辛标记后与对虾白斑综合征病毒基因库克隆杂交 ,筛选出一段长度为 70 7bp的EcoRI基因片段 ,该片段在一个开放阅读框内。并含DNA多聚酶B家族特有的保守序列YGDTDS。经与基因库比较 ,其氨基酸序列与藻类DNA病毒科 (Phycodnaviridae)的几株藻类病毒的DNA多聚酶片段有部分相似 ,因此推测该核苷酸片段为对虾白斑综合征病毒DNA多聚酶基因的部分序列。  相似文献   

9.
对虾白斑综合症其病原是对虾白斑综合症病毒(White spot syndrome virus,简称WSSV)。 VP19是 WSSV的一个囊膜蛋白,HyNPV(Hybrid of AcNPV and BmNPV,简称HyNPV)是BmNPV和AcNPV通过基因重组后得到的一个具有BmNPV和AcNPV双重优点的新型杂交病毒,在克隆了VP19基因的基础上,成功构建了重组转移载体pBlueBicHisC-vp19和重组杆状病毒 HyNPV-VP19。用重组病毒注射接种5龄起蚕,经SDS-PAGE 和Western blotting分析,结果表明,WSSV-VP19基因在家蚕体内得到了表达,特异性条带大小与预计的基本一致,约为21kD。  相似文献   

10.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

11.
原位杂交研究对虾白斑杆状病毒在虾体内感染过程   总被引:7,自引:0,他引:7  
应用地高辛标记的对虾白斑杆状病毒(white spot syndrome baculovirus,WSSV)核酸探针,与人工感染后不同时间采集的对虾组织样品进行原位杂交,以动态研究病毒从侵染至对虾以病死亡的过程。将典型感染WSSV的病虾组织投喂健康对虾,结果显示:WSSV道德通过侵染消化道上皮进入虾体内增殖,此后随着细胞裂解、病毒粒子释放,游离的粒子伴随血淋巴循环进而杂其它靶组织,直至对虾发病死亡  相似文献   

12.
Recent studies showed that white spot syndrome virus (WSSV) isolates from different geographic locations share a high genetic similarity except the variable regions in ORF23/24 and ORF14/15, and variable number of tandem repeats (VNTR) within ORF94. In this study, genotyping was performed according to these three variable regions among WSSV isolates collected during 1998/1999 from Southern China. These WSSV isolates contain a deletion of 1168, 5657, 5898, 9316 and 11093 bp, respectively in the variable region ORF23/24 compared with WSSV-TW, and a deletion of 4749 or 5622 bp in the variable region ORF14/15 relative to TH-96-II. Four types of repeat units (RUs) (6, 8, 9 and 13 RUs) in ORF94 were detected in these isolates, with the shortest 6 RUs as the most prevalent type. Our results provide important information for a better understanding of the spatio-temporal transmission mode and the WSSV genetic evolution lineage.  相似文献   

13.
14.
钱娟  齐义鹏 《病毒学报》2005,21(6):461-467
对虾白斑综合征是一种严重危害对虾养殖业的病毒性疾病.由于目前对其病原体对虾白斑综合征病毒(WSSV)的研究不够深入,所以对WSSV的有效防治仍然是一大难题.为此,用完整的对虾白斑综合征病毒粒子作为靶抗原固相包被,淘选噬菌体展示单链抗体文库,得到两个能够与WSSV结合的单链抗体:E2和H4.单链抗体H4能够结合病毒并抑制病毒对原代培养的对虾淋巴细胞的感染,这些结果表明此单链抗体具有开发为诊断试剂盒和抗病毒药物的潜力.  相似文献   

15.
为了将可中和对虾白斑综合症病毒(WSSV)的单链抗体P1D3在酵母中实现表达,以原核表达载体M13噬菌粒为模板,设计带有SnaBⅠ和EcoRⅠ酶切位点的特异性引物,通过PCR方法扩增P1D3基因。经过酶切、连接反应将该基因连入大肠杆菌-酵母穿梭质粒pPIC9K上。重组质粒pPIC9K-scFvP1D3经BglⅡ线性化后,用电转化的方法转入毕赤酵母(Pichiapastoris)GS115中。通过PCR和DNA测序,挑选和鉴定阳性克隆。经甲醇诱导,P1D3在酵母中获得分泌表达。ELISA实验结果表明,酵母表达上清液中的单链抗体具有较高的WSSV结合活性,而且其活性要高于大肠杆菌所表达抗体的活性。表达条件优化后,单链抗体在酵母中最高表达量可达302mg/L,为开展对虾被动免疫研究提供了新的抗体来源。  相似文献   

16.
曾勇  陆承平 《病毒学报》2004,20(3):255-260
通过抑制性差减杂交技术建立了包含对虾白斑综合征病毒表达性基因的差减文库,并用cDNA微阵列技术进行了鉴定,得到255个正向克隆.对其中的184个正向阳性克隆进行了测序,测序结果通过BLAST与GenBank中序列进行比对,共得到WSSV(white spot syndrome virus,WSSV)基因30个.此次首次鉴定了5个,其中WSV184具有调控蛋白的结构特征(Cys2/Cys2型锌指),WSV321和WSV322含跨膜结构,且存在可能的糖基化位点.有3个被其它研究推断无polyA结构的阅读框所处的mRNA应有polyA结构.进一步用Dot Northern blot对克隆号PCI118(含WSSV阅读框WSV321和WSV322)进行鉴定,表明确实存在该基因的转录.进而根据已报道的WSSV基因序列设计两条引物,用快速扩增cDNA末端技术,扩增WSV321和WSV322两个阅读框所处的cD-NA的5′端片段和3′端片段,分析得到其全长共1 109bp,与已报道的WSSV全基因序列(AF332093)的相关序列完全相同.该mRNA存在polyA,并有加尾信号AATAAA;两个阅读框都没有自己的TATA盒,但都有病毒RNA聚合酶Ⅱ的结合位点-CCAAT盒;它们编码的蛋白质分别有117和227个氨基酸,都存在可能的糖基化位点,其中WSV321一个,WSV322两个.  相似文献   

17.
18.
Traditionally, developmental studies in plant biology have suffered from the lack of a convenient means to study gene function in non-model plant species. Here we show that virus-induced gene silencing (VIGS) is an effective new tool to study the function of orthologs of floral homeotic genes such as DEFICIENS (DEF) in non-model systems. We used a tobacco rattle virus (TRV)-based VIGS approach to study the function of the Nicotiana benthamiana DEF ortholog (NbDEF). Silencing of NbDEF in N. benthamiana using TRV-VIGS was similar to that of Antirrhinum def and Arabidopsis ap3 mutants and caused transformation of petals into sepals and stamens into carpels. Molecular analysis of the NbDEF -silenced plants revealed a dramatic reduction of the levels of NbDEF mRNA and protein in flowers. NbDEF silencing was specific and has no effect on the mRNA levels of NbTM6, the closest paralog of NbDEF. A dramatic reduction of the levels of N. benthamiana GLOBOSA (NbGLO) mRNA and protein was also observed in flowers of NbDEF-silenced plants, suggesting that cross-regulation of this GLO-like gene by NbDEF. Taken together, our results suggest that NbDEF is a functional homolog of Antirrhinum DEF. Our results are significant in that they show that TRV efficiently induces gene silencing in young and differentiating flowers and that VIGS is a promising new tool for analyses of developmental gene function in non-model organisms.  相似文献   

19.
20.
White spot syndrome virus (WSSV) can cause the most serious viral disease of shrimp and has a wide host range among crustaceans. Although researches show a lot about its genome and structure, information concerning the mechanism of how WSSV infects' cells is lacking. In this study, some experiments were applied to confirm the biological meaning of the protein–protein interaction between WSSV envelope protein, VP53A, and Penaeus monodon chitin-binding protein (PmCBP). Immunofluorescent study indicated that PmCBP is located on the cell surface of host cells. PmCBP amounts of about 34 kDa can be detected in both P. monodon and Litopenaeus vannamei tissues by Western blotting. In the in vivo neutralization experiment, both rVP53A and rPmCBP that were produced by Esherichia coli can promote resp. a 40% and 20% survival rate of the shrimp which were challenged by WSSV. Furthermore, a yeast-two-hybrid result revealed that PmCBP could interact with at least 11 WSSV envelope proteins. Those findings suggest that PmCBP may be involved in WSSV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号