首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Four doubly spin-labeled variants of human carbonic anhydrase II and corresponding singly labeled variants were prepared by site-directed spin labeling. The distances between the spin labels were obtained from continuous-wave electron paramagnetic resonance spectra by analysis of the relative intensity of the half-field transition, Fourier deconvolution of line-shape broadening, and computer simulation of line-shape changes. Distances also were determined by four-pulse double electron-electron resonance. For each variant, at least two methods were applicable and reasonable agreement between methods was obtained. Distances ranged from 7 to 24 A. The doubly spin-labeled samples contained some singly labeled protein due to incomplete labeling. The sensitivity of each of the distance determination methods to the non-interacting component was compared.  相似文献   

2.
X-ray crystal structures of carbonic anhydrase II (CAII) complexed with sulfonamide inhibitors illuminate the structural determinants of high affinity binding in the nanomolar regime. The primary binding interaction is the coordination of a primary sulfonamide group to the active site zinc ion. Secondary interactions fine-tune tight binding in regions of the active site cavity >5 A away from zinc, and this work highlights three such features: (1) advantageous conformational restraints of a bicyclic thienothiazene-6-sulfonamide-1,1-dioxide inhibitor skeleton in comparison with a monocyclic 2,5-thiophenedisulfonamide skeleton; (2) optimal substituents attached to a secondary sulfonamide group targeted to interact with hydrophobic patches defined by Phe131, Leu198, and Pro202; and (3) optimal stereochemistry and configuration at the C-4 position of bicyclic thienothiazene-6-sulfonamides; the C-4 substituent can interact with His64, the catalytic proton shuttle. Structure-activity relationships rationalize affinity trends observed during the development of brinzolamide (Azopt), the newest carbonic anhydrase inhibitor approved for the treatment of glaucoma.  相似文献   

3.
4.
This study reports the interaction between furosemide and human carbonic anhydrase II (hCA II) using fluorescence, UV-vis and circular dichroism (CD) spectroscopy. Fluorescence data indicated that furosemide quenches the intrinsic fluorescence of the enzyme via a static mechanism and hydrogen bonding and van der Walls interactions play the major role in the drug binding. The binding average distance between furosemide and hCA II was estimated on the basis of the theory of F?rster energy transfer. Decrease of protein surface hydrophobicity was also documented upon furosemide binding. Chemical modification of hCA II using N-bromosuccinimide indicated decrease of the number of accessible tryptophans in the presence of furosemide. CD results suggested the occurance of some alterations in α-helical content as well as tertiary structure of hCA II upon drug binding.  相似文献   

5.
Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some local structural differences are found in the active site resulting from amino acid sequence differences in the "130's segment" and the residue-63 loop (these may affect the nearby catalytic proton shuttle, His-64). Similar to human CAIV, the C-terminus of murine CAIV is surrounded by a substantial electropositive surface potential that may stabilize the interaction with the phospholipid membrane. Binding interactions observed for brinzolamide rationalize the generally weaker affinity of inhibitors used in glaucoma therapy toward CAIV compared with CAII.  相似文献   

6.
The structure of human carbonic anhydrase II at pH 9.5 has been studied by X-ray crystallographic methods to 2.2 A resolution. These studies complement those performed under acidic conditions in which the catalytically-important proton-shuttle group, His-64, exhibits conformational mobility about side-chain torsion angle chi 1. However, no structural changes are observed in the conformation of His-64 at high pH. Therefore, we conclude that the protonation of His-64 (as well as zinc-bound hydroxide) may be a factor which contributes to the predominantly "out" conformation for His-64 observed at low pH.  相似文献   

7.
Maupin CM  Voth GA 《Biochemistry》2007,46(11):2938-2947
Histidine at position 64 (His64) in human carbonic anhydrase II (HCA II) is believed to be the proton acceptor in the hydration direction and the proton donor in the dehydration direction for the rate-limiting proton transfer (PT) event. Although the biochemical effect of histidine at position 64 has been thoroughly investigated, the role of its orientation in the PT event is a topic of considerable debate. X-ray data of HCA II suggests that His64 can adopt either an "in" or "out" orientation. The "in" orientation is believed to be favored for the hydration direction PT event because the Ndelta of His64 is closer to the catalytic zinc. This orientation allows for smaller water bridges, which are postulated to be more conducive to PT. In the present work, classical molecular dynamics simulations have been conducted to elucidate the role that the His64 orientation may play in its ability to act as a proton donor/acceptor in HCA II. The free energy profile for the orientation of His64 suggests that the histidine will adopt an "in" orientation in the hydration direction, which brings Ndelta in close proximity to the catalytic zinc. When the histidine becomes protonated, it then rotates to an "out" orientation, creating a more favorable solvation environment for the protonated His64. In this "out" orientation, the imidazole ring releases the delta nitrogen's excess proton into the bulk environment. After the second PT event and when the zinc-bound water is regenerated, the His64 is again favored to reorient to the "in" orientation, completing the catalytic cycle.  相似文献   

8.
9.
10.
Summary Carbonic anhydrase (CA) is a functionally important enzyme in the central nervous system (CNS), where it is involved in the control of the acid-base balance and regulates the production of cerebrospinal fluid (CSF). Isoenzyme II (CA II) is the most widely distributed CA in the CNS, being present in at least myelin, oligodendrocytes, astrocytes and the choroid plexus. This study was undertaken to examine the presence of CA II in different brain tumours from 31 patients. Specific antibodies recognizing CA II were used in immunoperoxidase staining of tumour specimens. Anti-CA I and VI sera and normal rabbit serum were used as controls. CA II-positive staining was observed in all the astrocytic tumours (n = 9), oligodendrogliomas (n = 3) and medulloblastomas (n = 3). The most malignant tumours exhibited the strongest staining. In addition, four acoustic neurinomas, one plexiform neurofibroma, one choroid plexus papilloma, one ependymoblastoma and one subependymoma expressed the enzyme. Meningiomas (n = 4) and neuronal tumours (N = 4), including one dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos), were negative. Anti-CA I, VI and normal rabbit sera showed no specific staining in tumour cells. The presence of CA II in the astrocytomas was confirmed by Western blotting, which revealed a distinct 29 kDa polypeptide band corresponding the CA II. Anti-CA I serum showed similarly a single 29 kDa band, recognizing the enzyme which is abundantly present in the erythrocytes. The present results demonstrate that despite the malignant transformation of the cells, the expression of CA II is sustained in astrocytic tumours, oligodendrogliomas, ependymal and choroid plexus tumours and tumours of nerve sheath cell origin. Our results suggest that some tumours contain abundant CA II, which might leak into the CSF.  相似文献   

11.
Computer simulation techniques are used to address the question of how cyanide and related ions interact with human carbonic anhydrase II (HCAII). Spectroscopic results have suggested that cyanide is coordinated with the zinc ion, while recent X-ray results suggest that the cyanide ion is noncovalently associated with the zinc–water or zinchydroxide form of the enzyme. We have carried out simulations on three models in an attempt to shed light on why the spectroscopic and X-ray results differ. The first model we studied (Model I) has cyanide directly coordinated to the zinc ion, the second has it noncovalently interacting with the zinc–hydroxide (high pH) form of the enzyme (Model II), and the third has cyanide noncovalently interacting with the zinc–water (low pH) form of the enzyme (Model III). None of these models is satisfactory in explaining the available structural data obtained from X-ray crystallography. This leads us to propose an alternative model, in which HCAII hydrates HCN to form an OH?/HCN complex coordinated to the Zn ion. Ab initio calculations are consistent with this model. Based on these results we are able to explain the observed crystallographic behavior of cyanate and, by inference, thiocyanate. © 1993 Wiley-Liss, Inc.  相似文献   

12.
About 2% of human kidney carbonic anhydrase (carbonate hydro-lyase, EC 4.2.1.1) has been found in particulate fractions. Its distribution in the particulate fractions obtained by differential centrifugation suggests that it may be concentrated in the brush border. The particulate enzyme is like red cell carbonic anhydrace C in its susceptibility to inhibition by anions. Particulate carbonic anhydrase is firmly bound to the membrane and is not released by incubation at pH 10.6 and 37 degrees C or by addition of Triton X-100 or deoxycholate. In 10% Triton X-100 at pH 11.3 and 37 degrees C, the particulate enzyme is inactivated with a half time of about 20 min, and this is at least an order of magnitude slower than the inactivation of soluble enzymes in the presence or absence of membranes. The soluble enzymes are inactivated within a few minutes at 25 degrees C in 3-4% sodium dodecyl sulfate, but the particulate enzyme is relatively stable under those conditions, and its half-time of inactivation at 14 degrees C with a detergent-protein ratio of 25 was about 24 h. Gel filtration with Ultragel AcA-44 in sodium dodecyl sulfate indicates that the membrane carbonic anhydrase has a molecular weight of less than 66 000, so its stability is not due to association with large membrane fragments or vesicles. These results suggest that the membrane enzyme may be a different isozyme than the soluble carbonic anhydrases. Although present in relatively small amounts, its localization on the membrane could give it functional significance.  相似文献   

13.
We have previously prepared Ntau-carbosymethylhistidine-200 human carbonic anhydrase B using 90% [1-13C]bromoacetate and have observed the 13C NMR resonance of the enriched carboxylate now covalently attached in the active site. We report here chemical shift studies of the zinc-free carboxymethylated enzyme and its Co2+-substituted form, as well as relaxation studies of the resonance in the zinc enzyme at three frequencies (15.04, 25.15, and 90.5 MHz). The chemical shift and relaxation data are both consistent with the immobilization of the carboxylate at pH 8 and its approach or coordination to the zinc. The relaxation data indicate that lowering the pH to 5.5 leads to internal motion of the carboxymethyl moiety, consistent with the chemical shift evidence for the disruption of the proposed zinc--carboxylate coordination. Inhibitor binding at either pH 5.5 or 8.0 eliminates whatever internal motion might be present. The relaxation data have been interpreted using theoretical calculations on dipolar and chemical shift anisotropy contributions. The combined results indicate that the catalytic consequences of the carboxymethylation may be due to the proposed zinc--carboxylate coordination and need not result from the disruption of any role that histidine-200 might play in the catalytic mechanism.  相似文献   

14.
A Lanir  S Gradstajn  G Navon 《Biochemistry》1975,14(2):242-248
Longitudinal and transverse proton relaxation rates of water in solutions of manganese(II) bovine carbonic anhydrase have been measured by pulsed nuclear magnetic resonance spectrometry as a function of temperature (2-35 degrees), frequently (5-100 MHz) and pH. The pH dependence of the longitudinal relaxation rate was fitted to a sigmoidal curve with a pK value at 7.8, while the esterase activity of the manganese(II) enzyme in the hydrolysis of p-nitrophenyl acetate revealed an inflection point at pK = 8.2. The hydration number of manganese(II) carbonic anhydrase could be derived using either the frequency dependence of T1p or the T1p/T2p ratio at only one (high) frequency. Both treatments are in agreement with a model in which one water molecule is bound to the metal at high pH. At low pH the relaxation data imply that no-H20 exists in the first coordination sphere of the manganese ion. The various parameters which are responsible for the proton relaxation mechanisms have been evaluated and are compared to other manganese(II) enzyme systems. The pH dependence of the binding constant of manganese to apocarbonic anhydrase is also reported.  相似文献   

15.
Small molecule rescue of mutant forms of human carbonic anhydrase II (HCA II) occurs by participation of exogenous donors/acceptors in the proton transfer pathway between the zinc-bound water and solution. To examine more thoroughly the energetics of this activation, we have constructed a mutant, H64W HCA II, which we have shown is activated by 4-methylimidazole (4-MI) by a mechanism involving the binding of 4-MI to the side chain of Trp-64 approximately 8 A from the zinc. A series of experiments are consistent with the activation of H64W HCA II by the interaction of imidazole and pyridine derivatives as exogenous proton donors with the indole ring of Trp-64; these experiments include pH profiles and H/D solvent isotope effects consistent with proton transfer, observation of approximately fourfold greater activation with the mutant containing Trp-64 compared with Gly-64, and the observation by x-ray crystallography of the binding of 4-MI associated with the indole side chain of Trp-64 in W5A-H64W HCA II. Proton donors bound at the less flexible side chain of Trp-64 in W5A-H64W HCA II do not show activation, but such donors bound at the more flexible Trp-64 of H64W HCA II do show activation, supporting suggestions that conformational mobility of the binding site is associated with more efficient proton transfer. Evaluation using Marcus theory showed that the activation of H64W HCA II by these proton donors was reflected in the work functions w(r) and w(p) rather than in the intrinsic Marcus barrier itself, consistent with the role of solvent reorganization in catalysis.  相似文献   

16.
We describe the docking of selected steroidal and non-steroidal estrone sulphatase inhibitors, including the Phase I clinical trial candidate 667COUMATE (6), into the active site of human carbonic anhydrase II (hCA II). The docking scores are compared with the inhibition of hCA II and show good correlation with biological activity.  相似文献   

17.
We report here a theoretical study on the formation of long-range proton transfer pathways in proteins due to side chain conformational fluctuations of amino acid residues and reorganization of interior hydration positions. The proton transfer pathways in such systems may be modeled as fluctuating hydrogen-bonded networks with both short- and long-lived connections between the networked nodes, the latter being formed by polar protein atoms and water molecules. It is known that these fluctuations may extend over several decades of time ranging from a few femtoseconds to a few milliseconds. We have shown in this article how the use of a variety of theoretical methods may be utilized to detect a generic set of pathways and assess the feasibility of forming one or more transient connections. We demonstrate the application of these methods to the enzyme human carbonic anhydrase II and its mutants. Our results reveal several alternative pathways in addition to the one mediated by His-64. We also probe at length the mechanism of key conformational fluctuations contributing to the formation of the detected pathways.  相似文献   

18.
19.
Human carbonic anhydrase II (HCA II) has a histidine at position 64 (His64) that donates a proton to the zinc-bound hydroxide in catalysis of the dehydration of bicarbonate. To examine the effect of the histidine location on proton shuttling, His64 was replaced with Ala and Thr200 replaced with histidine (H64A-T200H HCAII), effectively relocating the proton shuttle residue 2 A closer to the zinc-bound hydroxide compared to wild type HCA II. The crystal structure of H64A-T200H HCA II at 1.8 A resolution shows the side chain of His200 directly hydrogen-bonded with the zinc-bound solvent. Different proton transfer processes were observed at pH 6 and at pH 8 during the catalytic hydration-dehydration cycle, measured by mass spectrometry as the depletion of 18O from C18O2 by H64A-T200H HCA II. The process at pH 6.0 is attributed to proton transfer between the side chain of His200 and the zinc-bound hydroxide, in analogy with proton transfer involving His64 in wild-type HCA II. At pH 8.0 it is attributed to proton transfer between bicarbonate and the zinc-bound hydroxide, as supported by the dependence of the rate of proton transfer on bicarbonate concentration and on solvent hydrogen isotope effects. This study establishes that a histidine directly hydrogen-bonded to the zinc-bound hydroxide, can adopt the correct distance geometry to support proton transfer  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号