首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested that contrast information may be quite independently represented in neural responses to simultaneous changes in contrast and luminance. Here we test to what extent this is true in human perception.

Methodology/Principal Findings

Small contrast stimuli were presented together with a 7-fold upward or downward step of mean luminance (between 185 and 1295 Td, corresponding to 14 and 98 cd/m2), either simultaneously or with various delays (50–800 ms). The perceived contrast of the target under the different conditions was measured with an adaptive staircase method. Over the contrast range 0.1–0.45, mainly subtractive attenuation was found. Perceived contrast decreased by 0.052±0.021 (N = 3) when target onset was simultaneous with the luminance increase. The attenuation subsided within 400 ms, and even faster after luminance decreases, where the effect was also smaller. The main results were robust against differences in target types and the size of the field over which luminance changed.

Conclusions/Significance

Perceived contrast is attenuated mainly by a subtractive term when coincident with a luminance change. The effect is of ecologically relevant magnitude and duration; in other words, strict contrast constancy must often fail during normal human visual behaviour. Still, the relative robustness of the contrast signal is remarkable in view of the limited dynamic response range of retinal cones. We propose a conceptual model for how early retinal signalling may allow this.  相似文献   

2.
In work electric activity of frog's retina was investigated by silent substitution technique. Electroretinogram was recorded as a response to abrupt exchange of the referent stimulus-line with fixed values of luminance and orientation to test lines with varied luminance and orientations. As a result of the analysis it has been allocated two types of responses of a retina. The response to onset-offset of a stimulus-line was similar to the response at homogeneous illumination of a retina (ERG), and was characterized by both the high amplitude of b-wave (hundreds mkV) and significant asymmetry of b- and d-waves. Whereas the same waves in response to substitution of the same stimuli were more symmetric and had on ten times smaller amplitudes. Such activity of frog's retina was referred as pattern electroretinogram (PERG) recorded in a high vertebrate's retina as response to stimuli whose contrast was temporally modulated. The analysis of interaction of luminance and line orientation channels in retina was carried out on the base of construction V-shaped functions of stimuli differentiation. It has shown, that activities of both channels are linearly summarized in PERG. It means independent and parallel functioning of these mechanisms. However, it takes the short subdivision of luminance, namely, when luminance of test line not far from luminance of referent line. At the same time, from the moment of the double prevalence of test line in relation to referent line, growth of PERG amplitude has nonlinearly form. Such two-stage changing of PERG amplitude speaks presence in a retina of a frog of two mechanisms of coding of luminance. One mechanism coding light intensity by power of the discharge, it forms the information on an absolute level of light in the environment. Its activity is caused basically, by receptors and cells of external plexiform layer and is submitted by b-wave of electroretinogram. Other mechanism submitted in PERG, is based on the vector code of stimulus, it forms the information on spatial and time differentiation of a light in the visual field and is connected, basically, with cells of internal plexiform layer of frog's retina.  相似文献   

3.
We have monitored the development of infant colour vision by measuring chromatic contrast sensitivity and acuity in eight young infants over a period of 6 months. Steady-state visual evoked potentials (VEPS) were recorded in response to both chromatic (red-green) and luminance (red-black or green-black) patterns that were reversed in contrast over time. For most infants, no response could be obtained to chromatic stimuli of any size or contrast before 5 weeks of age, although luminance stimuli of 20% contrast gave reliable responses at that age. When responses to chromatic stimuli first appeared, they could be obtained only with stimuli of very low spatial frequency, 20 times lower than the acuity for luminance stimuli. Both contrast sensitivity and acuity for chromatic stimuli increased steadily, more rapidly than for luminance stimuli. As the spectral selectivities of infant cones are similar to those of adults, the difference in rate of development of luminance and chromatic contrast sensitivity and acuity stimuli probably reflects neural development of the infant colour system.  相似文献   

4.
J M du Buf 《Spatial Vision》1992,6(4):243-263
Experiments were performed on the quasi-static perception of brightness and of apparent contrast of a foveal 1-deg disk, presented either as a luminance increment or decrement against a 300 cd.m-2 background. Results suggest that the perceptual attributes of brightness and apparent (or subjective) contrast should be distinguished. For an equal brightness difference with respect to the background, luminance increments are more effective than decrements. For an equal apparent contrast it is found that increments and decrements, up to 100 cd.m-2, are about equally effective; for higher values luminance decrements are more effective. Brightness increments and decrements can both be described by a Stevens power function of the respective luminance increments and decrements. Apparent contrast can, apart from applying a usual luminance contrast formula, also be described as a power function of the luminance difference with the background.  相似文献   

5.
Clear evidence of electrophysiological effects causing simultaneous contrast phenomena in the visual system of animals has lately been presented. These findings incite to subjective perceptual psychophysiological experiments and give some directions concerning the interpretation and generalizations of the results. Psychophysical measurements have been made of the visual response to sinusoidal, spatially varying stimuli in the mesopic region well above contrast threshold. The results are presented with the characteristic properties, object contrast, spatial frequency, and average luminance of the physical luminance distribution as parameters. Some regular features of the fundamental input-output relations of the visual system are elucidated. Non-linear as well as quasi-linear processes are predicted to be prevalent.  相似文献   

6.
The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.  相似文献   

7.
Mobile technology is increasingly used to measure visual acuity. Standards for chart-based acuity tests specify photometric requirements for luminance, optotype contrast and luminance uniformity. Manufacturers provide some photometric data but little is known about tablet performance for visual acuity testing. This study photometrically characterised seven tablet computers (iPad, Apple inc.) and three ETDRS (Early Treatment Diabetic Retinopathy Study) visual acuity charts with room lights on and off, and compared findings with visual acuity measurement standards. Tablet screen luminance and contrast were measured using nine points across a black and white checkerboard test screen at five arbitrary brightness levels. ETDRS optotypes and adjacent white background luminance and contrast were measured. All seven tablets (room lights off) exceeded the most stringent requirement for mean luminance (≥ 120 cd/m2) providing the nominal brightness setting was above 50%. All exceeded contrast requirement (Weber ≥ 90%) regardless of brightness setting, and five were marginally below the required luminance uniformity threshold (Lmin/Lmax ≥ 80%). Re-assessing three tablets with room lights on made little difference to mean luminance or contrast, and improved luminance uniformity to exceed the threshold. The three EDTRS charts (room lights off) had adequate mean luminance (≥ 120 cd/m2) and Weber contrast (≥ 90%), but all three charts failed to meet the luminance uniformity standard (Lmin/Lmax ≥ 80%). Two charts were operating beyond manufacturer’s recommended lamp replacement schedule. With room lights on, chart mean luminance and Weber contrast increased, but two charts still had inadequate luminance uniformity. Tablet computers showed less inter-device variability, higher contrast, and better luminance uniformity than charts in both lights-on and lights-off environments, providing brightness setting was >50%. Overall, iPad tablets matched or marginally out-performed ETDRS charts in terms of photometric compliance with high contrast acuity standards.  相似文献   

8.
We designed visual evoked potentials experiments to study the differential aspects of colour and brightness coding in man. The substitution of equally bright red and green stimuli for a background yellow was investigated and compared with different luminance increments and decrements of red and green. A dominant N87 component was found for a colour change from yellow to brighter red colours, which was less pronounced for green and absent for yellow luminance changes. It is also absent for pure red luminance increments and green luminance changes, but reappears with red luminance decrements or red-offset. The data are discussed within the framework of a new concept of how the visual system fuses red-green information and black-white border information. Retinal X-cells can transmit colour and high spatial frequency achromatic information simultaneously by encoding only the presence of edges (a.c.) for the black-white stimuli and the presence of both edges (a.c.) and uniform areas of colour (d.c.) for red-green stimuli. Phylogenetically this kind of information transmission enables colour vision to be implemented in a retina such as the cat's by adding only a second class of cones. Barlow's economy principle will be violated for colour in the periphery, but restored early in the striate cortex where there is an early decoding of the combined chromatic and achromatic information by the concentric double opponent cells. The N87 behaviour correlates with the proposed discharge of peripheral X-type cells, but not with the discharge of cortical double opponent concentric or simple cells, which no longer respond to homogeneous colour stimuli. It is suggested that N87 may be generated by geniculate afferents in the dendritic arborization of cortical cells, reflecting the behaviour of peripheral units, and thus the violation of the economy principle, rather than the next step in cortical processing. The early cortical restoration of the economy principle is supported by the absence of any further dissociated behaviour for colour and brightness in later components.  相似文献   

9.
The reaction of intracellular Ca(2+) to different agonist stimuli in primary hepatocytes from rainbow trout (Oncorhynchus mykiss) as well as the permanent fish cell line RTL-W1 was investigated systematically. In addition to "classical" agonists such as phenylephrine and ATP, model environmental toxicants like 4-nitrophenol and 3,4-dichloroaniline were used to elucidate possible interactions between toxic effects and Ca(2+) signaling. We report Ca(2+) oscillations in response to several stimuli in RTL-W1 cells and to a lesser extent in primary hepatocytes. Moreover, these Ca(2+) oscillations are amplitude-encoded in contrast to their mammalian counterpart. Bioinformatics and computational analysis were employed to identify key players of Ca(2+) signaling in fish and to determine likely causes for the experimentally observed differences between the Ca(2+) dynamics in fish cells compared to those in mammalian liver cells.  相似文献   

10.
Color and luminance contrasts attract independent attention   总被引:2,自引:0,他引:2  
Paying attention can improve vision in many ways, including some very basic functions such as contrast discrimination, a task that probably reflects very early levels of visual processing. Electrophysiological, psychophysical, and imaging studies on humans as well as single recordings in monkey show that attention can modulate the neuronal response at an early stage of visual processing, probably by acting on the response gain. Here, we measure incremental contrast thresholds for luminance and color stimuli to derive the contrast response of early neural mechanisms and their modulation by attention. We show that, for both cases, attention improves contrast discrimination, probably by multiplicatively increasing the gain of the neuronal response to contrast. However, the effects of attention are highly specific to the visual modality: concurrent attention to a competing luminance, but not chromatic pattern, greatly impedes luminance contrast discrimination; and attending to a competing chromatic, but not luminance, task impedes color contrast discrimination. Thus, the effects of attention are highly modality specific, implying separate attentional resources for different fundamental visual attributes at early stages of visual processing.  相似文献   

11.
An experimental study has been performed on neuronal mechanisms of sensitivity of cat visual neurons (lateral geniculate body) to the value and orientation of the vector of brightness gradient in a test stimulus. With changes of the value and orientation of the brightness gradient vector, there exists an optimal (preferred) orientation of the gradient vector, at which the neuronal response is maximal. The sensitivity of neurons to the brightness gradient at shifts of the gradient vector towards the preferred orientation increases not due to an increased excitation in neuronal reactions, but due to a reduction of reciprocal (on- and off-) inhibition, affecting this neuron, of adjacent neurons in neuronal pools. The reciprocal inhibitory interaction of on- and off-systems is enhanced by inhibiting the response of the antagonistic neuron at shifts of the brightness gradient vector in the stimulus from the preferred to the non-preferred orientation. This reciprocal inhibitory interaction is clearly seen in pairs of on- and off-neurons with superposed receptive fields (RF) at their simultaneous analysis of on- and off-responses at a change of the orientation of the brightness gradient vector by 180 degrees. Dependencies of the parameters (duration and intensity of inhibitory phases in responses) of reciprocal inhibitory interaction on orientation of the brightness gradient vector in RF of neurons are determined. Dependencies of responses of the total sample of neurons, which are plotted for on- and off-neurons, to their adequate and inadequate (on- and off-) stimuli on the orientation of the brightness gradient vector are inversely proportional.  相似文献   

12.
Three-dot alignment discrimination thresholds were determined for blobs with Gaussian spatial and temporal contrast envelopes. The stimuli were presented at detection threshold luminance contrast. Thresholds were determined as a function of the blur parameter of the stimuli. This was done for a range of eccentricities in the visual field (from 45 degrees nasal to 65 degrees temporal). The thresholds were corrected for variations of the stimulus extent with the blur parameter. The results were used to estimate the local spatial scale for three-dot alignment acuity. This was done by a method recently introduced by Watson (1987). It was found that the local spatial scale for three-dot alignment acuity is approximately linearly proportional to eccentricity.  相似文献   

13.
Representation of color stimuli in awake macaque primary visual cortex   总被引:5,自引:0,他引:5  
We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimuli were presented on colored backgrounds, chromatic tuning was different in most neurons, and the changes in tuning were consistent with some degree of sensitivity of the neurons to the chromatic contrast between stimulus and background. Quantitatively, the average response changes matched the magnitudes of color induction effects measured in human subjects under corresponding stimulus conditions.  相似文献   

14.
亮度(luminance)是最基本的视觉信息.与其他视觉特征相比,由于视神经元对亮度刺激的反应较弱,并且许多神经元对均匀亮度无反应,对亮度信息编码的神经机制知之甚少.初级视皮层部分神经元对亮度的反应要慢于对比度反应,被认为是由边界对比度诱导的亮度知觉(brightness)的神经基础.我们的研究表明,初级视皮层许多神经元的亮度反应要快于对比度反应,并且这些神经元偏好低的空间频率、高的时间频率和高的运动速度,提示皮层下具有低空间频率和高运动速度通路的信息输入对产生初级视皮层神经元的亮度反应有贡献.已经知道初级视皮层神经元对空间频率反应的时间过程是从低空间频率到高空间频率,我们发现的早期亮度反应是对极低空间频率的反应,与这一时间过程是一致的,是这一从粗到细的视觉信息加工过程的第一步,揭示了处理最早的粗的视觉信息的神经基础.另外,初级视皮层含有偏好亮度下降和高运动速度的神经元,这群神经元的活动有助于在光照差的环境中检测高速运动的低亮度物体.  相似文献   

15.
Along with physical luminance, the perceived brightness is known to depend on the spatial structure of the stimulus. Often it is assumed that neural computation of the brightness is based on the analysis of luminance borders of the stimulus. However, this has not been tested directly. We introduce a new variant of the psychophysical reverse-correlation or classification image method to estimate and localize the physical features of the stimuli which correlate with the perceived brightness, using a brightness-matching task. We derive classification images for the illusory Craik-O''Brien-Cornsweet stimulus and a “real” uniform step stimulus. For both stimuli, classification images reveal a positive peak at the stimulus border, along with a negative peak at the background, but are flat at the center of the stimulus, suggesting that brightness is determined solely by the border information. Features in the perceptually completed area in the Craik-O''Brien-Cornsweet do not contribute to its brightness, nor could we see low-frequency boosting, which has been offered as an explanation for the illusion. Tuning of the classification image profiles changes remarkably little with stimulus size. This supports the idea that only certain spatial scales are used for computing the brightness of a surface.  相似文献   

16.
1. This study describes the use of an oligodendroglial cell line (158N) to study the protective effects of X-chromosome-linked inhibitor of apoptosis (XIAP) overexpression.2. 158N cells were transiently transfected with either pCMV-Myc-XIAP or control pCMV-Myc vector. At 48 h post-transfection, immunoblotting and immunocytochemical staining showed robust myc-XIAP overexpression in pCMV-Myc-XIAP transfected cells relative to pCMV-Myc-transfected cells and normal 158N cells. 158N cells were treated with either 100 nm staurosporine (STS) or 300 M dopamine (DA) and cell survival/function determined using two cell viability assays.3. Both STS and DA treatments resulted in increased apoptotic death of pCMV-Myc transfected cells. In contrast, there was significant decrease in apoptotic cell death in cells transfected with pCMV-Myc-XIAP. Finally, XIAP overexpression was found to significantly reduce caspase-3 enzyme activity levels in response to apoptotic stimuli.4. These results provide evidence that XIAP overexpression promotes cell survival in a non-neuronal cell type derived from the central nervous system. In addition, these data suggest that the 158N oligodendroglial cell line is a suitable tool for transient transfection studies, which is a problem frequently encountered when attempting to introduce genes of interest in cultures of primary oligodendroglia.  相似文献   

17.
Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1st-and 2nd-order lines, with the 2nd-order lines being encoded by a subset of the mechanisms sensitive to 1st-order lines.  相似文献   

18.
Gordon J  Shapley R 《Spatial Vision》2006,19(2-4):133-146
A gray region can be made to look colored by a colored surround. This phenomenon, chromatic induction, depends on color differences around the boundary of the region. We performed experiments on chromatic induction with small, initially achromatic, targets on nine different colored surrounds ranging in color from blue to red. Using scaling of saturation as our measure of perceived color strength, we found that chromatic induction is at its maximum when the brightness contrast at the boundary between target and surroundings is minimal. This implies that the neural mechanism in the cerebral cortex that mediates the appearance of brightness at a boundary inhibits the activity of chromatic mechanisms at that same boundary. Observers matched the apparent brightness and luminance of each of the colored surrounds. For surround colors where brightness and luminance matches differ, brightness contrast, not luminance contrast, controls chromatic induction. These new findings, taken together with other evidence, require a new theory of color appearance that includes mutually inhibitory interactions between color and brightness mechanisms that are sensing color and brightness contrast at visual boundaries.  相似文献   

19.

Background

The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes.

Methodology

To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX).

Conclusions

We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillation-preserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firing rate of oscillatory cells. These results suggest that contralateral retinal innervation is crucial for the generation of an oscillatory pattern in addition to its role in driving responses to visual stimuli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号