首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的探讨临床适用的菌群培养方法,用于检测分析细菌性阴道病患者阴道优势菌群,以更好地指导临床诊治。方法采集32例细菌性阴道病(BV)患者的阴道分泌物标本,在不同气体环境中用非选择性、半定量方法做细菌培养,比较培养结果,分析患者阴道优势菌群。结果在厌氧环境中培养时菌落数量最多,检出的优势菌共15种,每份标本的优势细菌种类多数为2种(20/32),少数为3种(3/32);而在微需氧及需氧环境中检出的主要菌分别为8种及5种。结论非选择性半定量、厌氧培养的方法可有效、简便地了解BV阴道优势菌群的构成,可用于临床对BV菌群的检测分析研究。  相似文献   

2.
Abstract Lipopolysaccharide (LPS, endotoxin) was extracted from biofilm and planktonically grown monoagglutinable (1118) and polyagglutinable (258 and 15703) strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients with chronic pulmonary infections. Analysis by polyacrylamide gel electrophoresis (PAGE) followed by immune-detection of LPS fractions showed an S-form appearance of strain 1118 and 258 with three distinct clusters of high molecular weight bands, whereas 15703 appeared semi-rough. LPS of semi-rough cells grown planktonically and as biofilm showed a very similar PAGE pattern; however, the core/lipid A R-LPS fraction was more prominent in biofilm-LPS than in planktonic-LPS extracted from the S-form bacteria (1118 and 258). The apparent change in LPS sub-unit components of the bacteria when grown as biofilm may reflect changes in the outer membrane structure that contribute to the altered physico-chemical properties of biofilm bacteria in foreign-device associated infections and chronic P. aeruginosa lung infection in cystic fibrosis patients.  相似文献   

3.
A chemostat with population specific recycle was employed to alter the dynamics of a competitive mixed culture of Escherichia coli. Based on differential expression of a functional maltoporin, the two populations were separated by specific adhesion on starch-Sepharose. The slower growing population was the recycled to the reactor. The specific recycle was successful in maintaining the slower growing population at a high level than in comparable reactors without recycle.  相似文献   

4.
Polyhydroxybutyrate production from lactate using a mixed microbial culture   总被引:1,自引:0,他引:1  
In this study we investigated the use of lactate and a lactate/acetate mixture for enrichment of poly-3-hydroxybutyrate (PHB) producing mixed cultures. The mixed cultures were enriched in sequencing batch reactors (SBR) that established a feast-famine regime. The SBRs were operated under conditions that were previously shown to enable enrichment of a superior PHB producing strain on acetate (i.e., 12 h cycle length, 1 day SRT and 30°C). Two new mixed cultures were eventually enriched from activated sludge. The mixed culture enriched on lactate was dominated by a novel gammaproteobacterium. This enrichment can accumulate over 90 wt% PHB within 6 h, which is currently the best result reported for a bacterial culture in terms of the final PHB content and the biomass specific PHB production rate. The second mixed culture enriched on a mixture of acetate and lactate can produce up to 84 wt% PHB in just over 8 h. The predominant bacterial species in this culture were Plasticicumulans acidivorans and Thauera selenatis, which have both been reported to accumulate large amounts of PHB. The data suggest that P. acidivorans is a specialist on acetate conversion, whereas Thauera sp. is a specialist on lactate conversion. The main conclusion of this work is that the use of different substrates has a direct impact on microbial composition, but has no significant effect on the functionality of PHB production process.  相似文献   

5.
Lower chlorinated compounds such as cis-dichloroethene (cis-DCE) and vinyl chloride (VC) often accumulate in chloroethene-contaminated aquifers due to incomplete reductive dechlorination of higher chlorinated compounds. A highly enriched aerobic culture that degrades VC as a growth substrate was obtained from a chloroethene-contaminated aquifer material. The culture rapidly degraded 50-250 microM aqueous VC to below GC detection limit with a first-order rate constant of 0.2 day(-1). Besides VC, the culture also degraded ethene as the sole carbon source. In addition, the culture degraded cis-DCE, but only in the presence of VC. However, no degradation of trans-DCE or TCE occurred either in the presence or absence of VC. The ability of the TRW culture to degrade cis-DCE is significant for natural attenuation since both VC and cis-DCE are often found in chloroethene-contaminated groundwater. Experiments examining the effect of oxygen threshold on VC degradation showed that the culture was able to metabolize VC efficiently at extremely low concentrations of dissolved oxygen (DO). Complete removal of 150 micromoles of VC occurred in the presence of only 0.2 mmol of oxygen (1.8 mg/L DO). This is important since most groundwater environments contain low DO (1-2 mg/L). Studies showed that the culture was able to withstand long periods of VC starvation. For example, the culture was able to assimilate VC with minimal lag time even after 5 months of starvation. This is impressive from the point of its sustenance under field conditions. Overall the culture is robust and degrades VC to below the detection limit rendering this culture suitable for field application.  相似文献   

6.
Hydrolysate was tested as substrate for hydrogen production by extreme thermophilic mixed culture (70°C) in both batch and continuously fed reactors. Hydrogen was produced at hydrolysate concentrations up to 25% (v/v), while no hydrogen was produced at hydrolysate concentration of 30% (v/v), indicating that hydrolysate at high concentrations was inhibiting the hydrogen fermentation process. In addition, the lag phase for hydrogen production was strongly influenced by the hydrolysate concentration, and was prolonged from approximately 11 h at the hydrolysate concentrations below 20% (v/v) to 38 h at the hydrolysate concentration of 25% (v/v). The maximum hydrogen yield as determined in batch assays was 318.4 ± 5.2 mL‐H2/g‐sugars (14.2 ± 0.2 mmol‐H2/g‐sugars) at the hydrolysate concentration of 5% (v/v). Continuously fed, and the continuously stirred tank reactor (CSTR), operating at 3 day hydraulic retention time (HRT) and fed with 20% (v/v) hydrolysate could successfully produce hydrogen. The hydrogen yield and production rate were 178.0 ± 10.1 mL‐H2/g‐sugars (7.9 ± 0.4 mmol H2/g‐sugars) and 184.0 ± 10.7 mL‐H2/day Lreactor (8.2 ± 0.5 mmol‐H2/day Lreactor), respectively, corresponding to 12% of the chemical oxygen demand (COD) from sugars. Additionally, it was found that toxic compounds, furfural and hydroxymethylfurfural (HMF), contained in the hydrolysate were effectively degraded in the CSTR, and their concentrations were reduced from 50 and 28 mg/L, respectively, to undetectable concentrations in the effluent. Phylogenetic analysis of the mixed culture revealed that members involved hydrogen producers in both batch and CSTR reactors were phylogenetically related to the Caldanaerobacter subteraneus, Thermoanaerobacter subteraneus, and Thermoanaerobacterium thermosaccharolyticum. Biotechnol. Bioeng. 2010;105: 899–908. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Neither Flavobacterium sp. nor Pseudomonas sp. grew on a polyethylene glycol (PEG) 6000 medium containing the culture filtrate of their mixed culture on PEG 6000. The two bacteria did not grow with a dialysis culture on a PEG 6000 medium. Flavobacterium sp. grew well on a dialysis culture containing a tetraethylene glycol medium supplemented with a small amount of PEG 6000 as an inducer, while poor growth of Pseudomonas sp. was observed. Three enzymes involved in the metabolism of PEG, PEG dehydrogenase, PEG-aldehyde dehydrogenase and PEG-carboxylate dehydrogenase (ether-cleaving) were present in the cells of Flavobacterium sp. The first two enzymes were not found in the cells of Pseudomonas sp. PEG 6000 was degraded neither by intact cells of Flavobacterium sp. nor by those of Pseudomonas sp., but it was degraded by their mixture. Glyoxylate, a metabolite liberated by the ether-cleaving enzyme, inhibited the growth of the mixed culture. The ether-cleaving enzyme was remarkably inhibited by glyoxylate. Glyoxylate was metabolized faster by Pseudomonas sp. than by Flavobacterium sp., and seemed to be a key material for the symbiosis.  相似文献   

8.
Modeling product formation in anaerobic mixed culture fermentations   总被引:1,自引:0,他引:1  
The anaerobic conversion of organic matter to fermentation products is an important biotechnological process. The prediction of the fermentation products is until now a complicated issue for mixed cultures. A modeling approach is presented here as an effort to develop a methodology for modeling fermentative mixed culture systems. To illustrate this methodology, a steady-state metabolic model was developed for prediction of product formation in mixed culture fermentations as a function of the environmental conditions. The model predicts product formation from glucose as a function of the hydrogen partial pressure (P(H2)), reactor pH, and substrate concentration. The model treats the mixed culture as a single virtual microorganism catalyzing the most common fermentative pathways, producing ethanol, acetate, propionate, butyrate, lactate, hydrogen, carbon dioxide, and biomass. The product spectrum is obtained by maximizing the biomass growth yield which is limited by catabolic energy production. The optimization is constrained by mass balances and thermodynamics of the bioreactions involved. Energetic implications of concentration gradients across the cytoplasmic membrane are considered and transport processes are associated with metabolic energy exchange to model the pH effect. Preliminary results confirmed qualitatively the anticipated behavior of the system at variable pH and P(H2) values. A shift from acetate to butyrate as main product when either P(H2) increases and/or pH decreases is predicted as well as ethanol formation at lower pH values. Future work aims at extension of the model and structural validation with experimental data.  相似文献   

9.
The oxidation process of sulfide minerals in natural environments is achieved by microbial communities from the Archaea and Bacteria domains. A metabolic reconstruction of two dominant species, Leptospirillum ferriphilum and Ferroplasma acidiphilum, which are always found together as a mixed culture in this natural environments, was made. The metabolic model, composed of 152 internal reactions and 29 transport reactions, describes the main interactions between these species, assuming that both use ferrous iron as energy source, and F. acidiphilum takes advantage of the organic compounds secreted by L. ferriphilum for chemomixotrophic growth. A first metabolic model for a mixed culture used in bacterial leaching is proposed in this article, which pretends to represent the characteristics of the mixed culture in a simplified manner. It was evaluated with experimental data through flux balance analysis (FBA) using as objective function the maximization of biomass. The growth yields on ferrous iron obtained for each microorganism are consistent with experimental data, and the flux distribution obtained allows understanding of the metabolic capabilities of both microorganisms growing together in a bioleaching process. The model was used to simulate the growth of F. acidiphilum on different substrates, to determine in silico which compounds maximize cell growth, and which are essential. Knockout simulations were carried out for L. ferriphilum and F. acidiphilum metabolic models, predicting key enzymes of central metabolism. The results of this analysis are consistent with experimental data from literature, showing a robust behavior of the metabolic model. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:307–315, 2015  相似文献   

10.
11.
Light scattering and viscosity measurements were carried out on the previously chemically characterised exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. The same exopolysaccharide was also produced by other clinical strains in different laboratories. Therefore, the name Cepacian is now proposed for this exopolysaccharide. Experiments performed as a function of the ionic strength on the native polymer revealed a change in the overall shape of the polymer at low ionic strength. This behaviour was absent in the de-acetylated sample. Potentiometric titrations and light scattering experiments carried out on the acidic form of the native polymer revealed the formation of macromolecular aggregates with a stoichiometry n and 2n stabilised by interactions involving the uronic acid residues.  相似文献   

12.
Abstract The association of Desulfobulbus sp. with Methanosarcina barkeri 227 was able to produce CH4 from propionate in the presence of sulfate, if a sufficient amount of ferrous iron was added to the media in order to trap the soluble sulfides produced from sulfate. In the absence of ferrous iron, soluble sulfides inhibited the acetoclastic reaction. Attempts to cultivate Desulfobulbus sp. with H2-utilising methanogenic bacteria in the absence of sulfate did not succeed.  相似文献   

13.
Postsynaptic currents and action potentials recorded from neurons in a mixed culture of rat dorsal root ganglion and spinal cord cells are described. The existence of mutual synaptic connections between the above two types of neurons is demonstrated. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 358–360, July–August, 2006.  相似文献   

14.
The mixed lymphocyte culture (MLC) is an established clinical method for bone marrow transplantation, as it serves as an in vitro model for allogenic reaction and transplantation. We previously showed that cytokine release into the supernatant is a more specific and sensitive parameter for cross-reactivity in the MLC than the common measurement of cell proliferation. Therefore we tried to find an inhibitor of the MLC in vitro with the least side effects in vivo, measuring interferon (IFN)-γ as one of the most important cytokines in posttransplant medicine. Earlier studies showed that zinc is an important trace element for immune function with both stimulatory and inhibitory effects on immune cells. We found that slightly elevated zinc concentrations (three to four times the physiological level), which do not decrease T-cell proliferation in vitro nor produce immunosuppressive effects in vivo, suppress alloreactivity in the mixed lymphocyte culture. In this report we analyzed the mechanism whereby zinc influences the MLC to possibly find a nontoxic way of immunosuppression.  相似文献   

15.
A stable methanogenic mixed culture was enriched from an industrial environment to utilize chloroacetate as sole carbon and energy source for growth. It immobilized spontaneously on activated charcoal and grew reproducibly on this carrier in a fluidized bed reactor when supplied with an anaerobic mineral salts medium. Substrate disappearance was complete. Methane, CO2 and chloride ions were conclusively identified as the metabolic products and quantified. The growth yield from chloroacetate was about 1 g of protein/mol of carbon. The calculated degradation rate in the fluidized bed reactor was 0.2 to 0.8 mmol/l·h. The first metabolic intermediate from [2–13C]monochloroacetate in portions of biofilm-coated carrier was shown by 13C-NMR to be glycolate, from which 13CO2 and 13CH4 were formed. Glycolate was formed in an oxygen-insensitive hydrolysis, but its conversion to CO2 and CH4 was strictly anaerobic and sensitive to inhibition by bromoethanesulfonate. Degradation of [1-14C]-and [2-14C]-chloroacetate each yielded the same amount of [14C]-methane. We thus presume glycolate to be cleaved to CO2 and H2, which were the substrates for methanogenesis. Dehalogenation was limited to chlorobromo-, iodo- and dichloroacetate. These four compounds and glycolate were utilized as the sole carbon and energy sources by the methanogenic mixed culture.  相似文献   

16.
Summary An integrated mixed bacterial culture consisting of four strains has been isolated by a batch enrichment technique. The cellulolytic member (strain D) is aCellulomonas sp. and the others are non-cellulolytic. The interaction between strains D and C is pronounced and appears to involve an exchange of reducing sugars and growth factors. The symbiotic relationship of this naturally occurring mixed culture is therefore one of mutualism. The filter paper cellulase and carboxymethyl cellulase activities in extracellular fluid are high, while -glucosidase activity is low. The mixed culture digests a variety of lignocellulosics efficiently and is of fundamental interest in the study of microbial interrelationships.  相似文献   

17.
Bacteria in natural habitats only occur in consortia together with various other species. Characterization of bacterial species, however, is normally done by laboratory testing of pure isolates. Any interactions that might appear during growth in mixed-culture are obviously missed by this approach. Existing experimental studies mainly focus on two-species mixed cultures with species specifically chosen for their known growth characteristics, and their anticipated interactions. Various theoretical mathematical studies dealing with mixed cultures and possible interspecies effects exist, but often models cannot be validated due to a lack of experimental data. Here, we present a concept for the identification of interspecies effects in mixed cultures with arbitrary and unknown single-species properties. Model structure and parameters were inferred from single-species experiments for the reproduction of mixed-culture experiments by simulation. A mixed culture consisting of the three-species Pseudomonas aeruginosa, Burkholderia cepacia, and Staphylococcus aureus served as a model system. For species-specific enumeration a quantitative terminal restriction length polymorphism (qT-RFLP) assay was used. Based on models fitted to single-species cultivations, the outcome of mixed-culture experiments was predicted. Deviations of simulation results and experimental findings were then used to design additional single-cell experiments, to modify the corresponding growth kinetics, and to update model parameters. Eventually, the resulting mixed-culture dynamics was predicted and compared again to experimental results. During this iterative cycle, it became evident that the observed coexistence of P. aeruginosa and B. cepacia in mixed-culture chemostat experiments cannot be explained on the basis of glucose as the only substrate. After extension of growth kinetics, that is, for use of amino acids as secondary substrates, mixed-culture simulations represented the experimental findings very well. According to the model structure, as motivated by single-species experiments, the growth of P. aeruginosa and B. cepacia on glucose and amino acids could be assumed to be independent of each other. In contrast, both substrates are taken up simultaneously by S. aureus.  相似文献   

18.
The growth characteristics and nutrient removal fromsynthetic wastewater by Rhodobacter sphaeroides,Chlorella sorokiniana and Spirulinaplatensis were investigated under aerobic dark(heterotrophic) and aerobic light (photoheterotrophic)conditions. Both in terms of economy and efficiency,aerobic dark conditions were the best for wastewatertreatment using R. sphaeroides and C.sorokiniana, but light was necessary with S.platensis. Neither growth nor nutrient removalcharacteristics of the cells were affected insynthetic wastewater with as high as 10 000 ppmacetate, 1000 ppm propionate, 700 ppm nitrate and 100 ppmphosphate. Although R. sphaeroides and C. sorokiniana showed good growth in syntheticwastewater containing 400 ppm of ammonia, S.platensis was completely inhibited.When grown as a monoculture, none of thestrains could simultaneously remove acetate,propionate, ammonia, nitrate and phosphate from thewastewater. R. sphaeroides could remove allthe above nutrients except nitrate, but the rate of removal was relatively low. The rate of nutrientsremoval by C. sorokiniana was higher, but theorganism could not remove propionate; S.platensis could efficiently remove nitrate, ammoniaand phosphate, but none of the organic acids. A mixedculture of R. sphaeroides and C.sorokiniana was therefore used for simultaneousremoval of organic acids, nitrate, ammonia andphosphate. The optimum ratio of the cells depended onthe composition of the wastewater.  相似文献   

19.
Abstract Diglycolic acid dehydrogenase activity linked with 2,6-dichlorophenolindophenol and phenazine methosulfate was found in the particulate fraction of the cell-free extract of a mixed culture of Flavobacterium and Pseudomonas species grown on polyethylene glycol 6000. The amount of glyoxylic acid formed increased with the increase in reaction time and enzyme concentration. Horse heart cytochrome c , 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl 2H-tetrazolium bromide, and nitro blue tetrazolium, served as hydrogen acceptors in the presence of phenazine methosulfate. Enzyme activity was competitively inhibited by 1,4-benzoquinone. The enzyme was also active on tetraethylene glycol dicarboxylic acid, a metabolite of tetraethylene glycol, and on methoxy- or ethoxyacetic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号