首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(5):767-779
Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.  相似文献   

2.
Autophagy begins with the formation of autophagosomes, a process that depends on the activity of the serine/threonine kinase ULK1 (hATG1). Although earlier studies indicated that ULK1 activity is regulated by dynamic polyubiquitination, the deubiquitinase involved in the regulation of ULK1 remained unknown. In this study, we demonstrate that ubiquitin‐specific protease 20 (USP20) acts as a positive regulator of autophagy initiation through stabilizing ULK1. At basal state, USP20 binds to and stabilizes ULK1 by removing the ubiquitin moiety, thereby interfering with the lysosomal degradation of ULK1. The stabilization of basal ULK1 protein levels is required for the initiation of starvation‐induced autophagy, since the depletion of USP20 by RNA interference inhibits LC3 puncta formation, a marker of autophagic flux. At later stages of autophagy, USP20 dissociates from ULK1, resulting in enhanced ULK1 degradation and apoptosis. Taken together, our findings provide the first evidence that USP20 plays a crucial role in autophagy initiation by maintaining the basal expression level of ULK1.  相似文献   

3.
The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway   总被引:1,自引:0,他引:1  
Protein ubiquitination and deubiquitination are dynamic processes implicated in the regulation of numerous cellular pathways. Monoubiquitination of the Fanconi anemia (FA) protein FANCD2 appears to be critical in the repair of DNA damage because many of the proteins that are mutated in FA are required for FANCD2 ubiquitination. By screening a gene family RNAi library, we identify the deubiquitinating enzyme USP1 as a novel component of the Fanconi anemia pathway. Inhibition of USP1 leads to hyperaccumulation of monoubiquitinated FANCD2. Furthermore, USP1 physically associates with FANCD2, and the proteins colocalize in chromatin after DNA damage. Finally, analysis of crosslinker-induced chromosomal aberrations in USP1 knockdown cells suggests a role in DNA repair. We propose that USP1 deubiquitinates FANCD2 when cells exit S phase or recommence cycling after a DNA damage insult and may play a critical role in the FA pathway by recycling FANCD2.  相似文献   

4.
5.
Autophagy, mediated by a number of autophagy‐related (ATG) proteins, plays an important role in the bulk degradation of cellular constituents. Beclin‐1 (also known as Atg6 in yeast) is a core protein essential for autophagic initiation and other biological processes. The activity of Beclin‐1 is tightly regulated by multiple post‐translational modifications, including ubiquitination, yet the molecular mechanism underpinning its reversible deubiquitination remains poorly defined. Here, we identified ubiquitin‐specific protease 19 (USP19) as a positive regulator of autophagy, but a negative regulator of type I interferon (IFN) signaling. USP19 stabilizes Beclin‐1 by removing the K11‐linked ubiquitin chains of Beclin‐1 at lysine 437. Moreover, we found that USP19 negatively regulates type I IFN signaling pathway, by blocking RIG‐I‐MAVS interaction in a Beclin‐1‐dependent manner. Depletion of either USP19 or Beclin‐1 inhibits autophagic flux and promotes type I IFN signaling as well as cellular antiviral immunity. Our findings reveal novel dual functions of the USP19‐Beclin‐1 axis by balancing autophagy and the production of type I IFNs.  相似文献   

6.
Chemical modulators of autophagy provide useful pharmacological tools for examination of autophagic processes, and also may lead to new therapeutic agents for diseases in which control of cellular sequestration and degradation capacity are beneficial. We have identified that timosaponin A-III (TAIII), a medicinal saponin reported to exhibit anticancer properties and improve brain function, is a pronounced activator of autophagy. In this work, the salient features and functional role of TAIII-induced autophagy were investigated. In TAIII-treated cells, autophagic flux with increased formation of autophagosomes and conversion into autolysosomes is induced in association with inhibition of mammalian target of rapamycin activity and elevation of cytosolic free calcium. The TAIII-induced autophagy is distinct from conventional induction by rapamycin, exhibiting large autophagic vacuoles that appear to contain significant contents of endosomal membranes and multivesicular bodies. Furthermore, TAIII stimulates biosynthesis of cholesterol, which is incorporated to the autophagic vacuole membranes. The TAIII-induced autophagic vacuoles capture ubiquitinated proteins, and in proteasome-inhibited cells TAIII promotes autophagy of aggregation-prone ubiquitinated proteins. Our studies demonstrate that TAIII induced a distinct form of autophagy, and one of its pharmacological actions is likely to enhance the cellular quality control capacity via autophagic clearance of otherwise accumulated ubiquitinated protein aggregates.  相似文献   

7.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

8.
The ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. Mammalian USP14 (Ubp6 in yeast) is unique among known UBP enzymes in that it is activated catalytically upon specific association with the 26S proteasome. Here, we report the crystal structures of the 45-kDa catalytic domain of USP14 in isolation and in a complex with ubiquitin aldehyde, which reveal distinct structural features. In the absence of ubiquitin binding, the catalytic cleft leading to the active site of USP14 is blocked by two surface loops. Binding by ubiquitin induces a significant conformational change that translocates the two surface loops thereby allowing access of the ubiquitin C-terminus to the active site. These structural observations, in conjunction with biochemical characterization, identify important regulatory mechanisms for USP14.  相似文献   

9.
10.
Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.  相似文献   

11.
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cyclic AMP-regulated chloride channel that plays an important role in regulating the volume of the lung airway surface liquid, and thereby mucociliary clearance and elimination of pathogens from the lung. In epithelial cells, cell surface CFTR abundance is determined in part by regulating both CFTR endocytosis from the apical plasma membrane and recycling back to the plasma membrane. We recently reported, using an activity-based chemical screen to identify active deubiquitinating enzymes (DUBs) in human airway epithelial cells, that Ubiquitin Specific Protease-10 (USP10) is located and active in the early endosomal compartment and regulates the deubiquitination of CFTR and thereby promotes its endocytic recycling. siRNA-mediated knockdown of USP10 increased the multi-ubiquitination and lysosomal degradation of CFTR and decreased the endocytic recycling and the half-life of CFTR in the apical membrane, as well as CFTR-mediated chloride secretion. Over-expression of wild-type USP10 reduced CFTR multi-ubiquitination and degradation, while over-expression of a dominant-negative USP10 promoted increased multi-ubiquitination and lysosomal degradation of CFTR. In the current study, we show localization and activity of USP10 in the early endosomal compartment of primary bronchial epithelial cells, as well as an interaction between CFTR and USP10 in this compartment. These studies demonstrate a novel function for USP10 in facilitating the deubiquitination of CFTR in early endosomes, thereby enhancing the endocytic recycling and cell surface expression of CFTR.  相似文献   

12.
Eukaryotic ribosome biogenesis requires hundreds of trans-acting factors and dozens of RNAs. Although most factors required for ribosome biogenesis have been identified, little is known about their regulation. Here, we reveal that the yeast deubiquitinating enzyme Ubp10 is localized to the nucleolus and that ubp10Δ cells have reduced pre-rRNAs, mature rRNAs, and translating ribosomes. Through proteomic analyses, we found that Ubp10 interacts with proteins that function in rRNA production and ribosome biogenesis. In particular, we discovered that the largest subunit of RNA polymerase I (RNAPI) is stabilized via Ubp10-mediated deubiquitination and that this is required in order to achieve optimal levels of ribosomes and cell growth. USP36, the human ortholog of Ubp10, complements the ubp10Δ allele for RNAPI stability, pre-rRNA processing, and cell growth in yeast, suggesting that deubiquitination of RNAPI may be conserved in eukaryotes. Our work implicates Ubp10/USP36 as a key regulator of rRNA production through control of RNAPI stability.  相似文献   

13.
Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.Subject terms: Breast cancer, Translational research  相似文献   

14.
Individuals carrying a germ line mutation of the breast cancer susceptibility gene BRCA2 are predisposed to breast, ovarian, and other types of cancer. The BRCA2 protein has been proposed to function in the repair of DNA double-strand breaks. Using an immunopurification-mass spectrometry approach to identify novel proteins that associate with the BRCA2 gene product, we found that a deubiquitinating enzyme, USP11, formed specific complexes with BRCA2. Moreover, BRCA2 was constitutively ubiquitinated in vivo in the absence of detectable proteasomal degradation. Mitomycin C (MMC) led to decreased BRCA2 protein levels associated with increased ubiquitination, consistent with proteasome-dependent degradation. While BRCA2 could be deubiquitinated by USP11 in transient overexpression assays, a catalytically inactive USP11 mutant had no effect on BRCA2 ubiquitination or protein levels. Antagonism of USP11 function either through expression of this mutant or through RNA interference increased cellular sensitivity to MMC in a BRCA2-dependent manner. All of these results imply that BRCA2 expression levels are regulated by ubiquitination in the cellular response to MMC-induced DNA damage and that USP11 participates in DNA damage repair functions within the BRCA2 pathway independently of BRCA2 deubiquitination.  相似文献   

15.
Helene Knævelsrud 《FEBS letters》2010,584(12):2635-31696
Ubiquitinated protein aggregates are hallmarks of a range of human diseases, including neurodegenerative, liver and muscle disorders. These protein aggregates are typically positive for the autophagy receptor p62. Whereas the ubiquitin-proteasome system (UPS) degrades shortlived and misfolded ubiquitinated proteins that are small enough to enter the narrow pore of the barrel-shaped proteasome, the lysosomal pathway of autophagy can degrade larger structures including entire organelles or protein aggregates. This degradation requires autophagy receptors that link the cargo with the molecular machinery of autophagy and is enhanced by certain posttranslational modifications of the cargo. In this review we focus on how autophagy clears aggregate-prone proteins and the relevance of this process to protein aggregate associated diseases.  相似文献   

16.
Recent studies have suggested that ubiquitination of mitochondrial proteins participates in regulating mitochondrial dynamics in mammalian cells, but it is unclear whether deubiquitination is involved in this process. Here, we identify human ubiquitin-specific protease 30 (USP30) as a deubiquitinating enzyme that is embedded in the mitochondrial outer membrane. Depletion of USP30 expression by RNA interference induced elongated and interconnected mitochondria, depending on the activities of the mitochondrial fusion factors mitofusins, without changing the expression levels of the key regulators for mitochondrial dynamics. Mitochondria were rescued from this abnormal phenotype by ectopic expression of USP30 in a manner dependent on its enzymatic activity. Our findings reveal that USP30 participates in the maintenance of mitochondrial morphology, a finding that provides new insight into the cellular function of deubiquitination.  相似文献   

17.
《Autophagy》2013,9(5):732-733
Selective degradation of intracellular targets, such as misfolded proteins and damaged organelles, is an important homeostatic function that autophagy has acquired in addition to its more general role in restoring the nutrient balance during stress and starvation. Although the exact mechanism underlying selection of autophagic substrates is not known, ubiquitination is a candidate signal for autophagic degradation of misfolded and aggregated proteins. p62/SQSTM1 was the first protein shown to bind both target-associated ubiquitin (Ub) and LC3 conjugated to the phagophore membrane, thereby effectively acting as an autophagic receptor for ubiquitinated targets. Importantly, p62 not only mediates selective degradation but also promotes aggregation of ubiquitinated proteins that can be harmful in some cell types. Is p62 the only autophagic receptor for selective autophagy? Looking for proteins that interact with ATG8 family proteins, we identified NBR1 (neighbor of BRCA1 gene 1) as an additional LC3- and Ub-binding protein. NBR1 is degraded by autophagy depending on its LC3-interacting region (LIR) but does not strictly require p62 for this process. Like p62, NBR1 accumulates and aggregates when autophagy is inhibited and is a part of pathological inclusions. We propose that NBR1 together with p62 promotes autophagic degradation of ubiquitinated targets and simultaneously regulates their aggregation when autophagy becomes limited.  相似文献   

18.
Zhang D  Zaugg K  Mak TW  Elledge SJ 《Cell》2006,126(3):529-542
The Chk2-p53-PUMA pathway is a major regulator of DNA-damage-induced apoptosis in response to double-strand breaks in vivo. Through analysis of 53BP1 complexes we have discovered a new ubiquitin protease, USP28, which regulates this pathway. Using a human cell line that faithfully recapitulated the Chk2-p53-PUMA pathway, we show that USP28 is required to stabilize Chk2 and 53BP1 in response to DNA damage. In this cell line, both USP28 and Chk2 are required for DNA-damage-induced apoptosis, and they accomplish this in part through regulation of the p53 induction of proapoptotic genes like PUMA. Our studies implicate DNA-damage-induced ubiquitination and deubiquitination as a major regulator of the DNA-damage response for Chk2, 53BP1, and a number of other proteins in the DNA-damage checkpoint pathway, including several mediators, such as Mdc1, Claspin, and TopBP1.  相似文献   

19.
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.  相似文献   

20.
Non‐small cell lung cancer (NSCLC) accounts for most lung cancer. To develop new therapy required the elucidation of NSCLC pathogenesis. The deubiquitinating enzymes USP 28 has been identified and studied in colon and breast carcinomas. However, the role of USP28 in NSCLC is unknown. The level mRNA or protein level of USP28 were measured by qRT‐PCR or immunohistochemistry (IHC). The role of USP28 in patient survival was revealed by Kaplan–Meier plot of overall survival in NSCLC patients. USP28 was up or down regulated by overexpression plasmid or siRNA transfection. Cell proliferation and apoptosis was assayed by MTT and FACS separately. Potential microRNAs, which targeted USP28, were predicated by bioinformatic algorithm and confirmed by Dual Luciferase reporter assay system. High mRNA and protein level of USP28 in NSCLC were both correlated with low patient survival rate. Overexpression of USP28 promoted NSCLC cells growth and vice versa. Down‐regulation of USP28 induced cell apoptosis. USP28 was targeted by miR‐4295. Overexpression of USP28 promoted NSCLC cells proliferation, and was associated with poor prognosis in NSCLC patients. The expression of USP28 may be regulated by miR‐4295. Our data suggested that USP28 was a tumour‐promoting factor and a promising therapeutic target for NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号