首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L M Abell  M H O'Leary 《Biochemistry》1988,27(16):5927-5933
The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k14/k15 = 0.9770 +/- 0.0021, a carbon isotope effect k12/k13 = 1.0308 +/- 0.0006, and a carbon isotope effect for L-[alpha-2H]histidine of 1.0333 +/- 0.0001 at pH 6.3, 37 degrees C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli [Abell, L. M., & O'Leary, M. H. (1988) Biochemistry 27, 3325], the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.  相似文献   

2.
Modern approaches for developing antibodies with coenzyme-dependent activities are discussed for pyridoxal 5"-phosphate dependent transformation of amino acid as an example. A new type of antigens analogous to enzyme–substrate compounds is suggested for the production of such antibodies. Approaches for the development of pyridoxal antiidiotypic antibody using analogs of coenzyme–substrate compounds and corresponding apoenzyme complexes are reviewed.  相似文献   

3.
Stereochemical studies of three pyridoxal phosphate dependent decarboxylases and serine hydroxymethyltransferase have allowed the dispositions of conjugate acids that operate at the C alpha and C-4' positions of intermediate quinoids to be determined. Kinetic work with the decarboxylase group has determined that two different acids are involved, a monoprotic acid and a polyprotic acid. The use of solvent kinetic isotope effects allowed the resolution of chemical steps in the reaction coordinate profile for decarboxylation and abortive transamination and pH-sensitivities gave the molecular pKa of the monoprotic base. Thus the epsilon-ammonium group of the internal aldimine-forming lysine residue operates at C-4'-si-face of the coenzyme and the imidazolium side chain of an active site histidine residue protonates at C alpha from the 4'-si-face. Histidine serves two other functions, as a base in generating nitrogen nucleophiles during both transaldimination processes and as a binding group for the alpha-carboxyl group of substrates. The latter role for histidine was determined by comparison of the sequences for decarboxylase active site tetrapeptides (e.g. -S-X-H-K-) with that for aspartate aminotransferase (e.g. -S-X-A-K-) where it was known, from X-ray studies, that the serine and lysine residues interact with the coenzyme. By using the Dunathan Postulate, the conformation of the external aldimine was modified, and without changing the tetrapeptide conformation, the alanine residue was altered to a histidine. This model for the active site of a pyridoxal dependent decarboxylase was consistent with all available stereochemical and mechanistic data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
6.
N F Phillips  N H Goss  H G Wood 《Biochemistry》1983,22(10):2518-2523
Pyruvate, phosphate dikinase from Bacteroides symbiosus is strongly inhibited by low concentrations of pyridoxal 5'-phosphate. The inactivation follows pseudo-first-order kinetics over an inhibitor concentration range of 0.1-2 mM. The inactivation is highly specific since pyridoxine and pyridoxamine 5'-phosphate, analogues of pyridoxal 5'-phosphate, which lack an aldehyde group, caused little or no inhibition even at high concentrations. The unreduced dikinase-pyridoxal 5'-phosphate complex displays an absorption maxima near 420 nm, typical for Schiff base formation. Following reduction of the Schiff base with sodium borohydride, N6-pyridoxyllysine was identified in the acid hydrolysate. When the enzyme was incubated in the presence of pyridoxal 5'-phosphate and reducing agent, the ATP/AMP, Pi/PPi, and pyruvate/phosphoenolpyruvate isotopic exchange reactions were inhibited to approximately the same extent, suggesting that the modification of the lysyl moiety causes changes in the enzyme that affect the reactivity of the pivotal histidyl residue. Phosphorylation of the histidyl group appears to prevent the inhibitor from attacking the lysine residue. On the other hand, addition of pyridoxal 5'-phosphate to the pyrophosphorylated enzyme promotes release of the pyrophosphate and yields the free enzyme which is subject to inhibition.  相似文献   

7.
HT-29, a cell line derived from a human colon carcinoma, exhibits very low alkaline phosphatase activity. The enzyme is thermolabile and is of the intestinal type. Hyperosmolality and/or sodium butyrate induce increased levels of activity. The increase is most pronounced with HT-29 cells growing in hyperosmolar medium containing sodium butyrate. Under these conditions specific activity rises over 1000-fold. The effect of hyperosmolality is blocked by cycloheximide and that of sodium butyrate by thymidine, cordycepin, and cycloheximide. By contrast to other human cancer cell lines, the enzyme of HT-29 is not influenced by cell density and glucocorticoid hormones. 5-Bromo-2′-deoxyuridine and inhibitors of DNA synthesis cause a slight increase in specific activity.  相似文献   

8.
L-Methionine gamma-lyase (MGL) catalyzes the pyridoxal 5'-phosphate (PLP) dependent alpha,gamma-elimination of L-methionine. We have determined two crystal structures of MGL from Pseudomonas putida using MAD (multiwavelength anomalous diffraction) and molecular replacement methods. The structures have been refined to an R-factor of 21.1% at 2.0 and 1.7 A resolution using synchrotron radiation diffraction data. A homotetramer with 222 symmetry is built up by non-crystallographic symmetry. Two monomers associate to build the active dimer. The spatial fold of subunits, with three functionally distinct domains and their quarternary arrangement, is similar to those of L-cystathionine beta-lyase and L-cystathionine gamma-synthase from Escherichia coli.  相似文献   

9.
Porter DJ  Short SA 《Biochemistry》2000,39(38):11788-11800
The catalytically active form of monofunctional yeast orotidine-5'-phosphate decarboxylase was a dimer (E(2)). The dimer equilibrium dissociation constant was 0.25 microM in 0.01 M MOPS Na(+) at pH 7.2. The bimolecular rate constant for dimer formation was 1.56 microM(-1) s(-1). The dimeric form of the enzyme was stabilized by NaCl such that the enzyme was E(2) in 100 mM NaCl at all concentrations of enzyme tested. The kinetics of binding of OMP to E(2) was governed by two ionizations (pK(1) = 6.1 and pK(2) = 7.7). From studies with substrate analogues, the higher pK was assigned to a group on the enzyme that interacted with the pyrimidinyl moiety. The value of the lower pK was dependent on the substrate analogue, which suggested that it was not exclusively the result of ionization of the phosphoryl moiety. During the decarboxylation of OMP, the fluorescence of E(2) was quenched over 20%. The enzymatic species with reduced fluorescence was a catalytically competent intermediate that had kinetic properties consistent with it being the initial enzyme-substrate complex. The stoichiometry for binding of OMP to E(2) was one OMP per enzyme monomer. The value of the first-order rate constant for conversion of the enzyme-substrate complex to free enzyme (36 s(-1)) calculated from a single turnover experiment ([E] > [S]) was slightly greater than the value of k(cat), 20 s(-1) (corrected for stoichiometry), calculated from steady-state data. In the single turnover experiments, the enzyme was E(2)*S, whereas in the steady-state turnover the experiment enzyme was E(2)*S(2). The similarity of these values suggested that the subunits were catalytically independent such that E(2)*S(2) could be treated as E*S and that conversion of the enzyme-substrate complex to E was k(cat). Kinetic data for the approach to the steady-state with OMP and E(2) yield a bimolecular association rate complex of 62 microM(-1) s(-1)and a dissociation rate constant for E*S of 60 s(-1). The commitment to catalysis was 0.25. By monitoring the effect of carbonic anhydrase on [H(+)] changes during a single turnover experiment, the initial product of the decarboxylation reaction was shown to be CO(2) not HCO(3-). UMP was released from the enzyme concomitantly with CO(2) during the conversion of E*S to E. Furthermore, the enzyme removed an enzyme equivalent of H(+) from solvent during this step of the reaction. The bimolecular rate constants for association of 6-AzaUMP and 8-AzaXMP, substrate analogues with markedly different nucleobases, had association rate constants of 112 and 130 microM(-1) s(-1), respectively. These results suggested that the nucleobase did not contribute significantly to the success of formation of the initial enzyme-substrate complex.  相似文献   

10.
11.
Reconstitution of apophosphorylase with pyridoxal 5'-phosphate analogs   总被引:6,自引:0,他引:6  
  相似文献   

12.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli was reversibly inactivated by pyridoxal 5′-phosphate. The residual activity of the enzyme was dependent on the concentration of the modifying reagent to a concentration of 5 mm. The maximum level of inactivation was 89%. Kinetic and equilibrium analyses of inactivation were consistent with a two-step process (Chen and Engel, 1975, Biochem. J.149, 619) in which the extent of inactivation was limited by the ratio of first-order rate constants for the reversible formation of an inactive Schiff base of pyridoxal 5′-phosphate and the enzyme from a noncovalent, dissociable complex of the enzyme and modifier. The calculated minimum residual activity was in close agreement with the experimentally determined value. The conclusion that the loss of catalytic activity resulted from modification of a lysine residue at the active site was based on the following data, (a) After incubation with 5 mm pyridoxal 5′-phosphate, 3.95 mol of the reagent was incorporated per mole of free enzyme with 89% loss of activity, while 2.75 mol of pyridoxal 5′-phosphate was incorporated into the enzyme-CoA intermediate with a loss of 10% of catalytic activity; the intermediate was formed in the presence of acetoacetyl-CoA; (b) acid hydrolysis of the modified, reduced enzyme-CoA intermediate yielded a single fluorescent compound that was identified as N6-pyridoxyllysine by chromatography in two solvent systems; (c) the enzyme was also protected from inactivation by saturating concentrations of free CoA and ADP but not by adenosine. The results suggested that a lysine residue is involved in the electrostatic binding of the pyrophosphate group of CoA. Carboxylic acid substrate did not protect the enzyme from inactivation.  相似文献   

13.
Molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential have been carried out to investigate the internal proton transfer equilibrium of the external aldimine species in l-dopa decarboxylase, and carbanion stabilization by the enzyme cofactor in the active site of alanine racemase. Solvent effects lower the free energy of the O-protonated PLP tautomer both in aqueous solution and in the active site, resulting a free energy difference of about -1 kcal/mol relative to the N-protonated Schiff base in the enzyme. The external aldimine provides the dominant contribution to lowering the free energy barrier for the spontaneous decarboxylation of l-dopa in water, by a remarkable 16 kcal/mol, while the enzyme l-dopa decarboxylase further lowers the barrier by 8 kcal/mol. Kinetic isotope effects were also determined using a path integral free energy perturbation theory on the primary (13)C and the secondary (2)H substitutions. In the case of alanine racemase, if the pyridine ring is unprotonated as that in the active site, there is destabilizing contribution to the formation of the α-carbanion in the gas phase, although when the pyridine ring is protonated the contribution is stabilizing. In aqueous solution and in alanine racemase, the α-carbanion is stabilized both when the pyridine ring is protonated and unprotonated. The computational studies illustrated in this article show that combined QM/MM simulations can help provide a deeper understanding of the mechanisms of PLP-dependent enzymes. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.  相似文献   

14.
To understand the catalytic mechanism of glycogen phosphorylase (EC 2.4.1.1), pyridoxal(5')phospho(1)-beta-D-glucose was synthesized and examined as a hypothetical intermediate in the catalysis. Pyridoxal phosphoglucose bound stoichiometrically to the cofactor site of rabbit muscle phosphorylase b in a similar mode of binding to the natural cofactor, pyridoxal 5'-phosphate. The rate of binding of pyridoxal phosphoglucose was only 1/100 compared with that of pyridoxal phosphate. The enzyme reconstituted with pyridoxal phosphoglucose showed no enzymatic activity at all even after prolonged incubation of the enzyme with substrates and activator. The present data would contradict participation of the phosphate group of pyridoxal phosphate in a covalent glucosyl-enzyme intermediate even if the covalent intermediate was formed during the catalysis.  相似文献   

15.
Cowpea chlorotic mottle virus (CCMV), which is stable at pH 5.0, has been modified at this pH with 0.5--0.7 pyridoxal 5'-phosphate molecules per protein subunit. The fluorescence properties of the labelled CCMV protein in different aggregation states of the virus provide information about the labelled part of the protein and the changes induced in its environment, when the nucleo-protein particles are swollen or dissociated. Fluorescence excitation and emission spectra indicate the presence of radiationless energy transfer from the aromatic amino acid residues to the label. Comparison of the fluorescence lifetimes of the labelled and the unlabelled protein confirms the existence of energy transfer. The mobility of the labelled part, which can be estimated from the fluorescence polarization of pyridoxal phosphate chromophore, is higher than expected from the dimensions of the virus and the protein subunits. Polarization values and the fluorescence lifetimes depend on the presence of small amounts of NaCl or MgCl2 in the buffer solution at pH 7.5. This is due to structural changes in the vicinity of the pyridoxal phosphate label of the RNA and of the protein part.  相似文献   

16.
The biodegradative ornithine decarboxylase of Escherichia coli has been purified to apparent homogeneity. At its pH optimum (pH 7.0), the enzyme exists as a dimer of 160,000 molecular weight. Aggregation of the dimer was promoted by lower pH values. The enzyme requires pyridoxal 5'-phosphate for activity. The coenzyme appears to be bound in Schiff base linkage as suggested by spectral studies and inhibition by NaBH4. The following sequence was determined for the coenzyme binding site: Val-His-(epsilon-Pxy)Lys-Gln-Gln-Ala-Gly-Gln. The properties of this enzyme are compared with the other biodegradative amino acid decarboxylases that have been isolated from E. coli.  相似文献   

17.
H C Isom  R D DeMoss 《Biochemistry》1975,14(19):4298-4304
Bacillus alvei apotryptophanase readily dissociates at low protein concentration and sediments at 5.7 S (dimer) in 0.01 M potassium phosphate (pH 7.8) from 9 to 33 degrees. With temperature held constant at 9 degrees, increasing the potassium, sodium, or ammonium phosphate buffer concentration increases the sedimentation value to 8.0 S. Increasing the monovalent cation concentration alone does not have the effect. Imidazole and pyridoxal compete with phosphate, preventing the effect. Raising the temperature to 26 degrees in the presence of high concentrations of potassium phosphate increases the sedimentation constant to 9.4 S. The addition of pyridoxal-P converts the dimer to a 9.4S tetramer. The conversion is dependent upon coenzyme concentration, temperature, and the nature of monovalent cation present. The Km for pyridoxal-P for the sodium form of the enzyme is more than tenfold greater than the Km for the potassium form of the enzyme. 2'-Methyl, 2'-hydroxyl, 6-methyl, and the N-oxide of pyridoxal-P are active in the association of dimer to tetramer but to differing extents. Analogs altered in the 4'-formyl position are also inactive structurally. Anthranilic acid, a competitive inhibitor of tryptophan, and 8-anilino-1-naphthalenesulfonic acid (ANS), a competitive inhibitor of pyridoxal-P binding, are both active in affecting the dimer to tetramer association but tryptophan is not. The dimer and tetramer are spectrally distinguishable through circular dichroic measurements, fluroescence quenching with pyridoxal-P or pyridoxal, and fluorescence enhancement with ANS. Pyridoxal-P causes the release of ANS from an ANS-apoenzyme complex.  相似文献   

18.
Transimination of the enzyme-linked cofactor by an amino acid is the first chemical transformation in the reactions catalyzed by pyridoxal 5'-phosphate-requiring enzymes. In this work, stopped flow fluorimetry was used to characterize the kinetics of transimination of the cofactor in D-serine dehydratase by several amino acids. The results of these studies indicate that transimination is a multistep process, the first step of which is probably formation of a noncovalent complex between the enzyme and the amino acid. D-Serine dehydratase was found to exhibit considerable specificity in the transimination reaction. Furthermore, the enzyme was shown to facilitate the transimination reaction with amino acids and inhibit transimination of the bound cofactor by amines lacking a carboxylate group. A reaction pathway was proposed for the transimination process which accounts for the specificity of the enzyme and indicates the changes in the conformation of the bound cofactor as dictated by the stereoelectronic requirements of the transimination reaction.  相似文献   

19.
20.
A radiochemical microassay for soluble and membrane-bound glutamate decarboxylase (GAD) is described. Up to 180 samples can be determined per day with a variation coefficient of 2%. The method detects newly synthesized gamma-amino-n-butyric acid in the picomole range and can easily be applied to other enzymes whose substrate and product differ by charge. In an aqueous homogenate of brain (1 + 10; w/v) about 15% of the total GAD activity are spun down by centrifugation (1 h, 100,000g) increasing to 35% of the total GAD activity in solutions with 8 mM calcium chloride or 100 mM potassium acetate. There is similar dependence on the cation concentration when GAD binds to phospholipid vesicles (liposomes) as well as dependence on lipid concentration and lipid composition. The coenzyme pyridoxal 5'-phosphate has no influence on GAD binding to liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号