首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Nogo-A, a member of the reticulon family, is present in neurons and oligodendrocytes. Nogo-A in central nervous system (CNS) myelin prevents axonal regeneration through interaction with Nogo receptor 1, but the function of Nogo-A in neurons is less known. We found that after axonal injury, Nogo-A is increased in dorsal root ganglion (DRG) neurons unable to regenerate following a dorsal root injury or a sciatic nerve ligation-cut injury and that exposure in vitro to CNS myelin dramatically enhanced neuronal Nogo-A mRNA and protein through activation of RhoA while inhibiting neurite growth. Knocking down neuronal Nogo-A by small interfering RNA results in a marked increase of neurite outgrowth. We constructed a nonreplicating herpes simplex virus vector (QHNgSR) to express a truncated soluble fragment of Nogo receptor 1 (NgSR). NgSR released from QHNgSR prevented myelin inhibition of neurite extension by hippocampal and DRG neurons in vitro. NgSR prevents RhoA activation by myelin and decreases neuronal Nogo-A. Subcutaneous inoculation of QHNgSR to transduce DRG neurons resulted in improved regeneration of myelinated fibers in both the dorsal root and the spinal dorsal root entry zone, with concomitant improvement in sensory behavior. The results indicate that neuronal Nogo-A is an important intermediate in neurite growth dynamics and its expression is regulated by signals related to axonal injury and regeneration, that CNS myelin appears to activate signaling events that mimic axonal injury, and that NgSR released from QHNgSR may be used to improve recovery after injury.  相似文献   

2.
The transplantation of Schwann cells (SCs) could successfully promote axonal regeneration. This is likely to attribute to the adhesion molecules expression and growth factors secretion of SCs. But which factor(s) play a key role has not been precisely studied. In this study, an outgrowth assay using dorsal root ganglia (DRG) neuron-SC co-culture system in vitro was performed. Co-culture of SCs or application of SC-conditioned medium (CM) substantially and significantly increased DRG neurite outgrowth. Further, nerve growth factor and NGF receptor (TrkA) mRNA were highly expressed in Schwann cells and DRG neuron, respectively. The high concentration of NGF protein was detected in SC-CM. When K-252a, a specific inhibitor of NGF receptor was added, DRG neurite outgrowth was significantly decreased in a concentration-dependent manner. These data strongly suggest that SCs play important roles in neurite outgrowth of DRG neurons by secreted NGF.  相似文献   

3.
4.
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intra-cellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes over-lapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.  相似文献   

5.
Kim JE  Liu BP  Park JH  Strittmatter SM 《Neuron》2004,44(3):439-451
Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.  相似文献   

6.
7.
Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased following the nervous system injury. Generally IL-1β induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1β takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1β is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1β overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-κB), mediated this effect. These findings suggest that IL-1β may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury.  相似文献   

8.
9.
Rho是小分子质量GTP酶Rho家族成员,在细胞的一些信号转导途径中起着分子开关的作用.Rho能通过作用于肌动蛋白骨架系统引起轴突生长锥塌陷,从而抑制轴突生长.研究表明,Nogo-A、MAG、OMgp等髓鞘源性的轴突再生抑制分子均可通过激活Rho介导的信号转导途径抑制轴突再生.  相似文献   

10.
Myelin inhibitors of axonal regeneration, like Nogo and MAG, block regrowth after injury to the adult CNS. While a GPI-linked receptor for Nogo (NgR) has been identified, MAG's receptor is unknown. We show that MAG inhibits regeneration by interaction with NgR. Binding of and inhibition by MAG are lost if neuronal GPI-linked proteins are cleaved. Binding of MAG to NgR-expressing cells is GPI dependent and sialic acid independent. Conversely, NgR binds to MAG-expressing cells. MAG, but not a truncated MAG that binds neurons but does not inhibit regeneration, precipitates NgR from NgR-expressing cells, DRG, and cerebellar neurons. Importantly, NgR antibody, soluble NgR, or dominant-negative NgR each prevent inhibition of neurite outgrowth by MAG. Also, MAG and Nogo66 compete for binding to NgR. These results suggest redundancy in myelin inhibitors and indicate therapies for CNS injuries.  相似文献   

11.
Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity. Alone, sialic acid–dependent binding of MAG to neurons is insufficient to effect inhibition of axonal growth. Thus, while soluble MAG-Fc (MAG extracellular domain fused to Fc), a truncated form of MAG-Fc missing Ig-domains 4 and 5, MAG(d1-3)-Fc, and another sialic acid binding protein, sialoadhesin, each bind to neurons in a sialic acid– dependent manner, only full-length MAG-Fc inhibits neurite outgrowth. These results suggest that a second site must exist on MAG which elicits this response. Consistent with this model, mutation of arginine 118 (R118) in MAG to either alanine or aspartate abolishes its sialic acid–dependent binding. However, when expressed at the surface of either CHO or Schwann cells, R118-mutated MAG retains the ability to inhibit axonal outgrowth. Hence, MAG has two recognition sites for neurons, the sialic acid binding site at R118 and a distinct inhibition site which is absent from the first three Ig domains.  相似文献   

12.
13.
The myelin-associated glycoprotein (MAG) is selectively localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths suggesting that it functions in glia–axon interactions in the PNS and CNS, and this is supported by much experimental evidence. In addition, MAG is now well known as one of several white matter inhibitors of neurite outgrowth in vitro and axonal regeneration in vivo, and this latter area of research has provided a substantial amount of information about neuronal receptors or receptor complexes for MAG. This article makes the hypothesis that the capacity of MAG to inhibit outgrowth of immature developing or regenerating neurites is an aberration of its normal physiological function to promote the maturation, maintenance, and survival of myelinated axons. The overview summarizes the literature on the function of MAG in PNS and CNS myelin sheaths and its role as an inhibitor of neurite outgrowth to put this hypothesis into perspective. Additional research is needed to determine if receptors and signaling systems similar to those responsible for MAG inhibition of neurite outgrowth also promote the maturation, maintenance, and survival of myelinated axons as hypothesized here, or if substantially different MAG-mediated signaling mechanisms are operative at the glia–axon junction. Special issue article in honor of Dr. George DeVries.  相似文献   

14.
We previously identified melanocortin receptor 4 (MC4R) in a search for genes associated with hypoglossal nerve regeneration. As melanocortins promote nerve regeneration after axonal injury, we investigated whether MC4R functions as a key receptor for peripheral nerve regeneration. In situ hybridization revealed that MC4R mRNA is induced in mouse hypoglossal motor neurons after axonal injury, whereas mRNAs for MC1R, MC2R, MC3R, and MC5R are not expressed either before or after nerve injury. This result was confirmed by RT-PCR. The level of MC4R mRNA expression increased significantly from day 3 after axotomy, reached a peak on day 5, and decreased to the control level on day 14. Similar induction of MC4R was observed in axotomized mouse dorsal root ganglia (DRGs). MC4R mRNA expression was induced exclusively among the MCR family in the L4-6 DRG after sciatic nerve injury. We further examined whether alpha-melanocortin stimulating hormone (alpha-MSH) promotes neurite elongation via MC4R. In mouse DRG neuron culture, alpha-MSH significantly promoted neurite outgrowth at a concentration of 10(-8) mol/L. This neurite-elongation effect was entirely inhibited by the addition of a selective MC4R blocker, JKC-363. Therefore, it is concluded that alpha-MSH could stimulate neurite elongation via MC4R in DRG neurons. The present results suggest that induction of MC4R is crucial for motor and sensory neurons to regenerate after axonal injury.  相似文献   

15.
Nogo-A is a neurite outgrowth inhibitor protein associated with myelin in the central nervous system. Unexpectedly, targeted disruption of Nogo-A in mice results in little or no improvement of axonal regeneration, suggesting that Nogo-A has other functions and/or receives complex regulations to exert its inhibitory functions. Here, we have found that Nogo-A becomes phosphorylated at Tyr-694 in the N-terminal region. The phosphorylation is mediated co-operatively by Src-family tyrosine kinases, which play many important roles in the nervous system. Levels of tyrosine phosphorylation of Nogo-A seem to be irrelevant to developmental stages of oligodendrocytes, and might be regulated by specific extracellular stimuli. Identification of tyrosine phosphorylation of Nogo-A will introduce an additional level of complexity into Nogo-A functions.  相似文献   

16.
Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on optic nerve regeneration in the goldfish ( Carassius auratus ). NADPH diaphorase staining revealed that nitric oxide synthase (NOS) activity was up-regulated primarily in the retinal ganglion cells (RGCs) 5–40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and protein also increased in the RGCs alone during this period. This period (5–40 days) overlapped with the process of axonal elongation during regeneration of the goldfish optic nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and small interfering RNA, specific for the nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intra-ocular dibutyryl cGMP promoted the axonal regeneration from injured RGCs in vivo . None of these molecules had an effect on cell death/survival in this culture system. This is the first report showing that NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in fish CNS neurons after nerve lesioning.  相似文献   

17.
Inhibitory molecules derived from CNS myelin and glial scar tissue are major causes for insufficient functional regeneration in the mammalian CNS. A multitude of these molecules signal through the Rho/Rho kinase (ROCK) pathway. We evaluated three inhibitors of ROCK, Y- 27632, Fasudil (HA-1077), and Dimethylfasudil (H-1152), in models of neurite outgrowth in vitro. We show, that all three ROCK inhibitors partially restore neurite outgrowth of Ntera-2 neurons on the inhibitory chondroitin sulphate proteoglycan substrate. In the rat optic nerve crush model Y-27632 dose-dependently increased regeneration of retinal ganglion cell axons in vivo. Application of Dimethylfasudil showed a trend towards increased axonal regeneration in an intermediate concentration. We demonstrate that inhibition of ROCK can be an effective therapeutic approach to increase regeneration of CNS neurons. The selection of a suitable inhibitor with a broad therapeutic window, however, is crucial in order to minimize unwanted side effects and to avoid deleterious effects on nerve fiber growth.  相似文献   

18.
Rapid and persistent activation of c-JUN is necessary for axonal regeneration after nerve injury, although upstream molecular events leading to c-JUN activation remain largely unknown. ZPK/DLK/MAP3K12 activates the c-Jun N-terminal kinase pathway at an apical level. We investigated axonal regeneration of the dorsal root ganglion (DRG) neurons of homozygous ZPK/DLK gene-trap mice. In vitro neurite extension assays using DRG explants from 14 day-old mice revealed that neurite growth rates of the ZPK/DLK gene-trap DRG explants were reduced compared to those of the wild-type DRG explants. Three ZPK/DLK gene-trap mice which survived into adulthood were subjected to sciatic nerve axotomy. At 24 h after axotomy, phosphorylated c-JUN-positive DRG neurons were significantly less frequent in ZPK/DLK gene-trap mice than in wild-type mice. These results indicate that ZPK/DLK is involved in regenerative responses of mammalian DRG neurons to axonal injury through activation of c-JUN.  相似文献   

19.
Directed and enhanced neurite growth with pulsed magnetic field stimulation   总被引:6,自引:0,他引:6  
Pulsed magnetic field (PMF) stimulation was applied to mammalian neurons in vitro to influence axonal growth and to determine whether induced current would direct and enhance neurite growth in the direction of the current. Two coils were constructed from individual sheets of copper folded into a square coil. Each coil was placed in a separate water-jacketed incubator. One was energized by a waveform generator driving a power amplifier, the other was not energized. Whole dorsal root ganglia (DRG) explant cultures from 15-day Sprague-Dawley rat embryos were established in supplemented media plus nerve growth factor (NGF) at concentrations of 0-100 ng/mL on a collagen-laminin substrate. Dishes were placed at the center of the top and bottom of both coils, so that the DRG were adjacent to the current flowing in the coil. After an initial 12 h allowing DRG attachment to the substrate floor, one coil was energized for 18 h, followed by a postexposure period of 18 h. Total incubation time was 48 h for all DRG cultures. At termination, DRG were histochemically stained for visualization and quantitative analysis of neurite outgrowth. Direction and length of neurite outgrowth were recorded with respect to direction of the current. PMF exposed DRG exhibited asymmetrical growth parallel to the current direction with concomitant enhancement of neurite length. DRG cultures not PMF exposed had a characteristic radial pattern of neurite outgrowth. These results suggest that PMF may offer a noninvasive mechanism to direct and promote nerve regeneration.  相似文献   

20.
The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号