首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rho family small GTPases play a crucial role in mediating cellular responses to stretch. However, it remains unclear how force is transduced to Rho signaling pathways. We investigated the effect of stretch on the activation and caveolar localization of RhoA and Rac1 in neonatal rat cardiomyocytes. In unstretched cardiomyocytes, RhoA and Rac1 were detected in both caveolar and non-caveolar fractions as assessed using detergent-free floatation analysis. Stretching myocytes for 4 min activated RhoA and Rac1. By 15 min of stretch, RhoA and Rac1 had dissociated from caveolae, and there was decreased coprecipitation of RhoA and Rac1 with caveolin-3. To determine whether compartmentation of RhoA and Rac1 within caveolae was necessary for stretch signaling, we disrupted caveolae with methyl beta-cyclodextrin (MbetaCD). Treatment with 5 mm MbetaCD for 1 h dissociated both RhoA and Rac1 from caveolae. Under this condition, stretch failed to activate RhoA or Rac1. Stretch-induced actin cytoskeletal organization was concomitantly impaired. Interestingly the ability of stretch to activate extracellular signal-regulated kinase (ERK) was unaffected by MbetaCD treatment, but ERK translocation to the nucleus was impaired. Stretch-induced hypertrophy was also inhibited. Actin cytoskeletal disruption with cytochalasin-D also prevented stretch from increasing nuclear ERK, whereas actin polymerization with jasplakinolide restored nuclear translocation of activated ERK in the presence of MbetaCD. We suggest that activation of RhoA or Rac1, localized in a caveolar compartment, is essential for sensing externally applied force and transducing this signal to the actin cytoskeleton and ERK translocation.  相似文献   

2.
Type III group B streptococcus (GBS) has been shown to invade human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, but the underlying mechanisms remain incompletely understood. In the present study, we showed that the geranylgeranyl transferase I inhibitor, GGTI-298, not the farnesyltransferase inhibitor, FTI-277 inhibited type III GBS invasion of HBMEC. The substrates for GGTI-298 include Rho family GTPases, and we showed that RhoA and Rac1 are involved in type III GBS invasion of HBMEC. This was shown by the demonstration that infection with type III GBS strain K79 increased the levels of activated RhoA and Rac1 and GBS invasion was inhibited in HBMEC expressing dominant-negative RhoA and Rac1. Of interest, the level of activated Rac1 in response to type III GBS was decreased in HBMEC expressing dominant-negative RhoA, while the level of activated RhoA was not affected by dominant-negative Rac1. These findings indicate for the first time that activation of geranylgeranylated proteins including RhoA and Rac1 is involved in type III GBS invasion of HBMEC and RhoA is upstream of Rac1 in GBS invasion of HBMEC.  相似文献   

3.
Studies of Rho GTPases in Drosophila and Xenopus suggest that Rho family proteins may play an important role in embryogenesis. A reverse genetic approach was employed to explore the role of Rho GTPases in murine cardiac development. Cardiac-specific inhibition of Rho family protein activities was achieved by expressing Rho GDIalpha, a specific GDP dissociation inhibitor for Rho family proteins, using the alpha-myosin heavy chain promoter, active at embryonic day (E)8.0 during morphogenesis of the linear heart tube. RhoA, Rac1 and Cdc42 activities were significantly inhibited, as shown by decreased membrane translocation of these proteins in the transgenic hearts. Transgenic F1 mice for each of two independent lines expressing the highest levels of the transgene, died around E10.5. Homozygotes of the middle copy-number lines, in which Rho GDIalpha expression was increased four-fold over normal levels, were also embryonic lethal. Cardiac morphogenesis in these embryos was disrupted, with incomplete looping, lack of chamber demarcation, hypocellularity and lack of trabeculation. Cell proliferation was inhibited in the transgenic hearts, as shown by immunostaining with anti-phosphohistone H3, a marker of mitosis. In addition, ventricular hypoplasia was associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases, and with down-regulation of cyclin A, while cell survival was not affected. These results reveal new biological functions for Rho family proteins as essential determinants of cell proliferation signals at looping and chamber maturation stages in mammalian cardiac development.  相似文献   

4.
Dynamic cellular rearrangements involving the actin cytoskeleton are required of both Sertoli and germ cells during spermatogenesis. Rho family small G proteins have been implicated in the control of the actin cytoskeleton in numerous cell types. Therefore, RhoA and Rac1 were investigated in Sertoli and germ cells. RhoA and Rac1 have been detected at both the mRNA and protein levels in these cells. In addition, Sertoli cell L-selectin is shown to interact with actin binding proteins, potentially providing a link between L-selectin and Rac1 signaling. Finally, inactivation of Sertoli cell Rho family proteins yields disruption of the actin cytoskeleton.  相似文献   

5.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

6.
Clostridium difficile Toxin B (TcdB) glucosylates low molecular weight GTP-binding proteins of the Rho subfamily and thereby causes actin re-organization (cell rounding). This "cytopathic effect" has been generally attributed to RhoA inactivation. Here we show that cells expressing non-glucosylatable Rac1-Q61L are protected from the cytopathic effect of TcdB. In contrast, cells expressing RhoA-Q63L or mock-transfected cells are fully susceptible for the cytopathic effect of TcdB. These findings are extended to the Rac1/RhoG mimic IpgB1 and the RhoA mimic IpgB2 from Shigella. Ectopic expression of IpgB1, but not IpgB2, counteracts the cytopathic effect of TcdB. These data strongly suggest that Rac1 rather than RhoA glucosylation is critical for the cytopathic effect of TcdB.  相似文献   

7.
The formation and directional guidance of neurites involves dynamic regulation of Rho family GTPases. Rac and Cdc42 promote neurite outgrowth, whereas Rho activation causes neurite retraction. Here we describe a role for collapsin response mediator protein (Crmp-2), a neuronal protein implicated in axonal outgrowth and a component of the semaphorin 3A pathway, in switching GTPase signaling when expressed in combination with either dominant active Rac or Rho. In neuroblastoma N1E-115 cells, co-expression of Crmp-2 with dominant active RhoA V14 induced Rac morphology, cell spreading and ruffling (and the formation of neurites). Conversely, co-expression of Crmp-2 with dominant active Rac1 V12 inhibited Rac morphology, and in cells already expressing Rac1 V12, Crmp-2 caused localized peripheral collapse, involving Rho (and Cdc42) activation. Rho kinase was a pivotal regulator of Crmp-2; Crmp-2 phosphorylation was required for Crmp-2/Rac1 V12 inhibition, but not Crmp-2/RhoA V14 induction, of Rac morphology. Thus Crmp-2, regulated by Rho kinase, promotes outgrowth and collapse in response to active Rho and Rac, respectively, reversing their usual morphological effects and providing a mechanism for dynamic modulation of growth cone guidance.  相似文献   

8.
PRK1 is a serine/threonine kinase that belongs to the protein kinase C superfamily. It can be activated either by members of the Rho family of small G proteins, by proteolysis, or by interaction with lipids. Here we investigate the binding of PRK1 to RhoA and Rac1, two members of the Rho family. We demonstrate that PRK1 binds with a similar affinity to RhoA and Rac1. We present the solution structure of the second HR1 domain from the regulatory N-terminal region of PRK1, and we show that it forms an anti-parallel coiled-coil. In addition, we have used NMR to map the binding contacts of the HR1b domain with Rac1. These are compared with the contacts known to form between HR1a and RhoA. We have used mutagenesis to define the residues in Rac that are important for binding to HR1b. Surprisingly, as well as residues adjacent to Switch I, in Switch II, and in helix alpha5, it appears that the C-terminal stretch of basic amino acids in Rac is required for a high affinity interaction with HR1b.  相似文献   

9.
10.
BACKGROUND: Previous studies of ion channel regulation by G proteins have focused on the larger, heterotrimeric GTPases, which are activated by heptahelical membrane receptors. In contrast, studies of the Rho family of smaller, monomeric, Ras-related GTPases, which are activated by cytoplasmic guanine nucleotide exchange factors, have focused on their role in cytoskeletal regulation. RESULTS: Here we demonstrate novel functions for the Rho family GTPases Rac and Rho in the opposing hormonal regulation of voltage-activated, ether-a-go-go-related potassium channels (ERG) in a rat pituitary cell line, GH(4)C(1). The hypothalamic neuropeptide, thyrotropin-releasing hormone (TRH) inhibits ERG channel activity through a PKC-independent process that is blocked by RhoA(19N) and the Clostridium botulinum C3 toxin, which inhibit Rho signaling. The constitutively active, GTPase-deficient mutant of RhoA(63L) rapidly inhibits the channels when the protein is dialysed directly into the cell through the patch pipette, and inhibition persists when the protein is overexpressed. In contrast, GTPase-deficient Rac1(61L) stimulates ERG channel activity. The thyroid hormone triiodothyronine (T3), which antagonizes TRH action in the pituitary, also stimulates ERG channel activity through a rapid process that is blocked by Rac1(17N) and wortmannin but not by RhoA(19N). CONCLUSIONS: Rho stimulation by G(13)-coupled receptors and Rac stimulation by nuclear hormones through PI3-kinase may be general mechanisms for regulating ion channel activity in many cell types. Disruption of these novel signaling cascades is predicted to contribute to several specific human neurological diseases, including epilepsy and deafness.  相似文献   

11.
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.  相似文献   

12.
Endothelial cells (ECs) self-organize into capillary networks when plated on extracellular matrix. In this process, Rho GTPases-mediated cytoskeletal dynamics control cell movement and organization of cell-to-matrix and cell-to-cell contacts. Time course analysis of RhoA and Rac1 activation matches specific morphological aspects of nascent pattern. RhoA-GTP increases early during EC adhesion and accumulates at sites of membrane ruffling. Rac1 is activated later and localizes in lamellipodia and at cell-to-cell contacts of organized cell chains. When ECs stretch and remodel to form capillary structures, RhoA-GTP increases again and associates with stress fibers running along the major cell axis. N17Rac1 and N19RhoA mutants impair pattern formation. Cell-to-cell contacts and myosin light chains (MLC) are targets of Rac1 and RhoA, respectively. N17Rac1 reduces the shift of beta-catenin and vascular endothelial cadherin to Triton X-100-insoluble fraction and impairs beta-catenin distribution at adherens junctions, suggesting that Rac1 controls the dynamics of cadherin-catenin complex with F-actin. During the remodeling phase of network formation, ECs show an intense staining for phosphorylated MLC along the plasma membrane; in contrast, MLC is less phosphorylated and widely diffused in N19RhoA ECs. Both N17Rac1 and N19RhoA have been used to investigate the role of wild type molecules in the main steps characterizing in vitro angiogenesis: (i) cell adhesion to the substrate, (ii) cell movement, and (iii) mechanical remodeling of matrix. N17Rac1 has a striking inhibitory effect on haptotaxis, whereas N19RhoA slightly inhibits EC adhesion and motility but more markedly Matrigel contraction. We conclude that different Rho GTPases control distinct morphogenetic aspects of vascular morphogenesis.  相似文献   

13.
Rac1 and RhoA regulate membrane ruffling and stress fiber formation. Both molecules appear to exert their control from the plasma membrane. In fibroblasts stimulated with platelet-derived growth factor or lysophosphatidic acid, the reorganization of the cytoskeleton begins at specific sites on the cell surface. We now report that endogenous Rac1 and RhoA also have a polarized distribution at the cell surface. Cell fractionation and immunogold labeling show that in quiescent fibroblasts both of these molecules are concentrated in caveolae, which are plasma membrane domains that are associated with actin-rich regions of the cell. Treatment of these cells with platelet-derived growth factor stimulated the recruitment of additional Rac1 and RhoA to caveolae fractions, while lysophosphatidic acid only caused the recruitment of RhoA. We could reconstitute the recruitment of RhoA using either whole cell lysates or purified caveolae. Surprisingly, pretreatment of the lysates with exoenzyme C3 shifted both resident and recruited RhoA from caveolae to noncaveolae membranes. The shift in location was not caused by inactivation of the RhoA effector domain. Moreover, chimeric proteins containing the C-terminal consensus site for Rac1 and RhoA prenylation were constitutively targeted to caveolae fractions. These results suggest that the polarized distribution of Rho family proteins at the cell surface involves an initial targeting of the protein to caveolae and a mechanism for retaining it at this site.  相似文献   

14.
XPLN,a guanine nucleotide exchange factor for RhoA and RhoB,but not RhoC   总被引:3,自引:0,他引:3  
Rho proteins cycle between an inactive, GDP-bound state and an active, GTP-bound state. Activation of these GTPases is mediated by guanine nucleotide exchange factors (GEFs), which promote GDP to GTP exchange. In this study we have characterized XPLN, a Rho family GEF. Like other Rho GEFs, XPLN contains a tandem Dbl homology and pleckstrin homology domain topography, but lacks homology with other known functional domains or motifs. XPLN protein is expressed in the brain, skeletal muscle, heart, kidney, platelets, and macrophage and neuronal cell lines. In vitro, XPLN stimulates guanine nucleotide exchange on RhoA and RhoB, but not RhoC, RhoG, Rac1, or Cdc42. Consistent with these data, XPLN preferentially associates with RhoA and RhoB. The specificity of XPLN for RhoA and RhoB, but not RhoC, is surprising given that they share over 85% sequence identity. We determined that the inability of XPLN to exchange RhoC is mediated by isoleucine 43 in RhoC, a position occupied by valine in RhoA and RhoB. When expressed in cells, XPLN activates RhoA and RhoB, but not RhoC, and stimulates the assembly of stress fibers and focal adhesions in a Rho kinase-dependent manner. We also found that XPLN possesses transforming activity, as determined by focus formation assays. In conclusion, here we describe a Rho family GEF that can discriminate between the closely related RhoA, RhoB, and RhoC, possibly giving insight to the divergent functions of these three proteins.  相似文献   

15.
Cadherin engagement regulates Rho family GTPases.   总被引:1,自引:0,他引:1  
The formation of cell-cell adherens junctions is a cadherin-mediated process associated with reorganization of the actin cytoskeleton. Because Rho family GTPases regulate actin dynamics, we investigated whether cadherin-mediated adhesion regulates the activity of RhoA, Rac1, and Cdc42. Confluent epithelial cells were found to have elevated Rac1 and Cdc42 activity but decreased RhoA activity when compared with low density cultures. Using a calcium switch method to manipulate junction assembly, we found that induction of cell-cell junctions increased Rac1 activity, and this was inhibited by E-cadherin function-blocking antibodies. Using the same calcium switch procedure, we found little effect on RhoA activity during the first hour of junction assembly. However, over several hours, RhoA activity significantly decreased. To determine whether these effects are mediated directly through cadherins or indirectly through engagement of other surface proteins downstream from junction assembly, we used a model system in which cadherin engagement is induced without cell-cell contact. For these experiments, Chinese hamster ovary cells expressing C-cadherin were plated on the extracellular domain of C-cadherin immobilized on tissue culture plates. Whereas direct cadherin engagement did not stimulate Cdc42 activity, it strongly inhibited RhoA activity but increased Rac1 activity. Deletion of the C-cadherin cytoplasmic domain abolished these effects.  相似文献   

16.
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.  相似文献   

17.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

18.
19.
20.
Here we report data describing some principles of the interaction between small GTP-binding proteins and large Clostridial cytotoxins (LCTs). Our investigation was based on the differential glucosylation of Rac1 versus RhoA by LCTs TcsL-1522, TcdB-1470 and TcdB-8864. Chimeric RhoA/Rac1 proteins and GTPases mutated at defined regions or single amino acids were used as substrates. Starting with chimeric Rac/Rho proteins we demonstrated that proteins containing the N-terminal 73 amino acids of Rac1 (but not those of RhoA) were efficiently glucosylated. Within this stretch, three regions differ significantly in Rac1 and RhoA. Regions containing amino acids 41-45 and 50-54 had no effect on toxin induced glucosylation, whereas amino acids 22-27 had a drastic impact on the potential of all three toxins to covalently modify the GTPases. Point mutations K25T of RhoA (numbering according to Rac1) and K27A of Cdc42 significantly increased glucosylation by the cytotoxins; introduction of lysines at the equivalent positions of Rac1 hindered modification. Our experiments demonstrate the influence of this charged residue on GTPase-LCT interactions. Amino acids 22-27 are part of the transition between the alpha1-helix to the switch I region of small GTP-binding proteins; both are known structures for specificity determination of the interactions with physiologic partners. Comparing these structures with data from our investigation we suggest that TcsL-1522, TcdB-1470 and TcdB-8864 mimic aspects of the physiologic interactions of small GTP-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号