首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic cells respond to signaling molecules with picomolar to nanomolar sensitivities. However, molar concentrations give no suggestion of the sufficient number of molecules per cell and are confusing when referring to physiological situations in which signaling molecules act in an immobilized state. Here, we studied platelet adhesion by thrombin, a key step in normal hemostasis and pathological arterial thrombosis. We generated a biofunctional nanosheet surface to mimic the in vivo solid-state interaction between platelets and thrombin at sites of injured tissues. We observed that <10 molecules readily activate platelets with high specificity, resulting in platelet adhesion and spreading. This number is much lower than expected from previous experiments in solution, in which the sole activation of platelets required a >1000-fold stoichiometric excess of thrombin. We conclude that immobilizing thrombin apposed to the membrane receptor allows platelets to respond with very high sensitivity. Moreover, we propose that irreversible cell activation may require several ligands to avoid activation by single, mislocalized signaling molecules.  相似文献   

2.
Activated platelets express CD40L on their plasma membrane and release the soluble fragment sCD40L. The interaction between platelet surface CD40L and endothelial cell CD40 leads to the activation of endothelium contributing to atherothrombosis. Few studies have directly demonstrated an increased expression of platelet CD40L in conditions of in vivo platelet activation in humans, and no data are available on its relevance for endothelial activation. We aimed to assess whether platelets activated in vivo at a localized site of vascular injury in humans express CD40L and release sCD40L, whether the level of platelet CD40L expression attained in vivo is sufficient to induce endothelial activation, and whether platelet CD40L expression is inhibited by aspirin intake. We used the skin-bleeding-time test as a model to study the interaction between platelets and a damaged vessel wall by measuring CD40L in the blood emerging from a skin wound in vivo in healthy volunteers. In some experiments, shed blood was analyzed before and 1 h after the intake of 500 mg of aspirin. Platelets from the bleeding-time blood express CD40L and release soluble sCD40L, in a time-dependent way. In vivo platelet CD40L expression was mild but sufficient to induce VCAM-1 expression and IL-8 secretion in coincubation experiments with cultured human endothelial cells. Moreover, platelets recovered from the bleeding-time blood activated endothelial cells; an anti-CD40L antibody blocked this effect. On the contrary, the amount of sCD40L released by activated platelets at a localized site of vascular injury did not reach the concentrations required to induce endothelial cell activation. Soluble monocyte chemoattractant protein-1, a marker of endothelium activation, was increased in shed blood and correlated with platelet CD40L expression. Aspirin intake did not inhibit CD40L expression by platelets in vivo. We concluded that CD40L expressed by platelets in vivo in humans upon contact with a damaged vessel wall activates endothelium; aspirin treatment does not inhibit this mechanism.  相似文献   

3.
Podocalyxin (Podxl) is a type I membrane sialoprotein of the CD34 family, originally described in the epithelial glomerular cells of the kidney (podocytes) in which it plays an important function. Podxl can also be found in megakaryocytes and platelets among other extrarenal places. The surface exposure of Podxl upon platelet activation suggested it could play some physiological role. To elucidate the function of Podxl in platelets, we generated mice with restricted ablation of the podxl gene in megakaryocytes using the Cre-LoxP gene targeting methodology. Mice with Podxl-null megakaryocytes did not show any apparent phenotypical change and their rates of growth, life span and fertility did not differ from the floxed controls. However, Podxl-null mice showed prolonged bleeding time and decreased platelet aggregation in response to physiological agonists. The number, size-distribution and polyploidy of Podxl-null megakaryocytes were similar to the floxed controls. Podxl-null platelets showed normal content of surface receptors and normal activation by agonists. However, the mice bearing Podxl-null platelets showed a significant retardation in the ferric chloride-induced occlusion of the carotid artery. Moreover, acute thrombosis induced by the i.v. injection of sublethal doses of collagen and phenylephrine produced a smaller fall in the number of circulating platelets in Podxl-null mice than in control mice. In addition, perfusion of uncoagulated blood from Podxl-null mice in parallel flow chamber showed reduced adhesion of platelets and formation of aggregates under high shear stress. It is concluded that platelet Podxl is involved in the control of hemostasis acting as a platelet co-stimulator, likely due to its pro-adhesive properties.  相似文献   

4.
Mesenchymal stem/stromal cells isolated from human term placenta (pMSCs) have potential to treat clinically manifested inflammatory diseases. Atherosclerosis is a chronic inflammatory disease, and platelets play a contributory role towards its pathogenesis. During transplantation, MSCs interact with platelets and exert influence on their functional outcome. In this study, we investigated the consequences of interaction between pMSCs and platelets, and its impact on platelet-mediated atherosclerosis in vitro. Human platelets were treated with various types of pMSCs either directly or with their secretome, and their effect on agonist-mediated platelet activation and functional characteristics were evaluated. Human umbilical vein endothelial cells (HUVECs) were used as control. The impact of pMSCs treatment on platelets was evaluated by the expression of activation markers and by platelet functional analysis. A subset of pMSCs reduced agonist-induced activation of platelets, both via direct contact and with secretome treatments. Decrease in platelet activation translated into diminished spreading, limited adhesion and minimized aggregation. In addition, pMSCs decreased oxidized LDL (ox-LDL)-inducedCD36-mediated platelet activation, establishing their protective role in atherosclerosis. Gene expression and protein analysis show that pMSCs express pro- and anti-thrombotic proteins, which might be responsible for the modulation of agonist-induced platelet functions. These data suggest the therapeutic benefits of pMSCs in atherosclerosis.  相似文献   

5.
Glycosphingolipid- and cholesterol-enriched membrane microdomains, called rafts, can be isolated from several mammalian cells, including platelets. These microdomains appear to play a critical role in signal transduction in several hematopoietic cells, but their function in blood platelets remains unknown. Herein, we first characterized the lipid composition, including the fatty acid composition of phospholipids, of human platelet rafts. Then their role in platelet activation process was investigated. Interestingly, thrombin stimulation led to morphological changes of rafts correlating with the production of lipid second messengers in these microdomains. Indeed, we could demonstrate for the first time that a large part of the stimulation-dependent production of phosphatidic acid and phosphoinositide 3-kinase products was concentrated in rafts. Moreover, cholesterol depletion with methyl-beta-cyclodextrin disrupted platelet rafts, dramatically decreased the agonist-dependent production of these lipid signaling molecules, and impaired platelet secretion and aggregation. Cholesterol repletion restored the physiological platelet responses. Altogether our data indicate that rafts are highly dynamic platelet membrane structures involved in critical signaling mechanisms linked to the production of lipid second messengers. The demonstration of phosphatidylinositol 3,4,5-trisphosphate production in rafts may have general implications for the understanding of the role of this key second messenger found ubiquitously in higher eucaryotic cells.  相似文献   

6.
The high amount of pp60c-src in platelets has led to speculation that this kinase is responsible for tyrosine-specific phosphorylation of cellular proteins during platelet activation by different agonists, and is, therefore, implicated in signal transduction of these cells. Unlike pp60v-src, the association of which with the cytoskeleton appears to be a prerequisite for transformation, pp60c-src is detergent-soluble in fibroblasts overexpressing the c-src gene, and its role in normal cellular function remains elusive. To gain a better understanding of the function of pp60c-src we have investigated the subcellular distribution of pp60c-src and its relationship to the cytoskeleton during platelet activation. Quantitative immunoblotting and immunoprecipitation have revealed that pp60c-src is detergent-soluble in resting platelets, while 40% of total platelet pp60c-src becomes associated with the cytoskeletal fraction upon platelet activation. We have also shown that a small pool of pp60c-src is associated with the membrane skeletal fraction which remains unchanged during the activation process. The interaction of pp60c-src with cytoskeletal proteins strongly correlates with aggregation and is mediated by GPIIb/IIIa receptor-fibrinogen binding. We suggest that the translocation of pp60c-src to the cytoskeleton and its association with cytoskeletal proteins may regulate tyrosine phosphorylation in platelets.  相似文献   

7.
The interaction of platelet membrane glycoprotein VI (GPVI) with collagen can initiate (patho)physiological thrombus formation. The viper venom C-type lectin family proteins convulxin and alboaggregin-A activate platelets by interacting with GPVI. In this study, we isolated from white-lipped tree viper (Trimeresurus albolabris) venom, alborhagin, which is functionally related to convulxin because it activates platelets but is structurally different and related to venom metalloproteinases. Alborhagin-induced platelet aggregation (EC50, <7.5 microg/ml) was inhibitable by an anti-alphaIIbbeta3 antibody, CRC64, and the Src family kinase inhibitor PP1, suggesting that alborhagin activates platelets, leading to alphaIIbbeta3-dependent aggregation. Additional evidence suggested that, like convulxin, alborhagin activated platelets by a mechanism involving GPVI. First, alborhagin- and convulxin-treated platelets showed a similar tyrosine phosphorylation pattern, including a similar level of phospholipase Cgamma2 phosphorylation. Second, alborhagin induced GPVI-dependent responses in GPVI-transfected K562 and Jurkat cells. Third, alborhagin-dependent aggregation of mouse platelets was inhibited by the anti-GPVI monoclonal antibody JAQ1. Alborhagin had minimal effect on convulxin binding to GPVI-expressing cells, indicating that these venom proteins may recognize distinct binding sites. Characterization of alborhagin as a GPVI agonist that is structurally distinct from convulxin demonstrates the versatility of snake venom toxins and provides a novel probe for GPVI-dependent platelet activation.  相似文献   

8.
Adaptor proteins play a pivotal role in the regulation of signal transduction events elicited after the engagement of cell surface receptors. Platelets exhibit a number of integral membrane receptors capable of initiating a cellular response. These include collagen receptors, von Willebrand factor receptors, the fibrinogen receptor, and a number of G-protein coupled receptors, such as those for thrombin and ADP. The primary function of platelet receptors is the translation of externally applied signals into appropriate responses leading to platelet activation being a prerequisite for normal hemostasis. Multitude of signalling pathways described in platelets is based on the interaction of compounds of many different categories, such as transmembrane receptors, protein kinases, protein phoshatases, G-proteins, transmembrane and cytosolic adaptor proteins, phosphoinositides, cyclic AMP or GMP. Adaptor proteins lack intrinsic effector function, but contain distinct molecular domains, which mediate protein-protein and protein-lipid interactions. These molecules thus serve as a scaffolding, around which effectors and their substrates are assembled into three-dimensional signaling complexes. Adaptor proteins integrate receptor-mediated signals at intracellular levels and couple signaling receptors to cytosolic signaling pathways. While the function of adaptor proteins is well established in immune cells, the knowledge about their role in platelet activation is still at the onset Over the last decade numerous adaptor proteins have been identified in platelets and shown to be involved in accurate assembly of intracellular signaling complexes. Collagen-induced platelet intracellular signaling through GPVI resembles the functional response of B- and T-cell antigen receptors and is the best described in the literature. This review focuses on the structure and functional role of the most extensively studied adaptor proteins during platelet activation induced by physiological agonists.  相似文献   

9.
It is known that the rate of thrombus formation depends on interaction between platelets and erythrocytes, but the mechanism of this process has remained obscure. We here show that nanomolar levels of hemoglobin released from damaged red blood cells can induce platelet aggregation. The molecular mechanism is not receptor-based, but involves oxidation of oxyhemoglobin by platelet-derived hydrogen peroxide, with subsequent generation of a small unknown free radical species, detected by ESR spectroscopy. Methemoglobin and carbon monoxide-treated hemoglobin are unable to cause platelet activation or radical formation. The aggregation of platelets induced by hemoglobin is completely blocked by catalase or radical scavengers. These findings indicate a role for a novel extracellular free radical second messenger in the activation of platelets.  相似文献   

10.
We have previously reported that stimulation of platelets causes a relocation of annexin V to the cytoplasmic side of the plasma membrane where it associates with actin. This study examined the association of annexin V with the platelet cytoskeleton and its binding to actin, following both physiological activation with thrombin and Ca2+ -ionophore activation. The time-dependence of annexin V incorporation into the detergent-extracted cytoskeleton following activation with thrombin was also measured. Although calcium from the intracellular stores was enough to relocate intracellular annexin V to the cytoskeleton, this relocation was further enhanced by influx of extracellular calcium. The association of annexin V with the cytoskeleton was found to be unaffected by the action of cytochalasin E, however, annexin V was solubilized when DNase I was used to depolymerize the membrane cytoskeleton, and spontaneously re-associated with the actin filaments when re-polymerization was induced in vitro. Using a bifunctional crosslinking reagent we have identified an 85-kDa complex in both membrane and cytoskeleton fractions containing annexin V and actin. Direct binding to actin filaments was only observed in high [Ca2+], however, inclusion of an extract from thrombin-stimulated platelets lowered the [Ca2+] requirement for the binding of annexin V to F-actin to physiological levels. We also show that GST-annexin V mimics the physiological binding of annexin V to membranes, and that this GST-annexin V binds directly to a specific isoform of actin. Immunoprecipitation using antibodies against annexin V copurify annexin V and gamma- but not beta-actin from activated platelets. This is the first report of a possible preferential binding of annexin V to a specific isoform of actin, namely gamma-actin. The results of this study suggest a model in which annexin V that relocates to the plasma membrane and binds to gamma-actin in an activation-dependent manner forms a strong association with the platelet cytoskeleton.  相似文献   

11.
Dehydroepiandrosterone (DHEA) and its sulfated form, DHEA-S, are the most abundant steroids circulating in human blood. DHEA stimulates endothelial cells to release high amounts of nitric oxide in the circulation. Nitric oxide activates guanylyl cyclase in platelets thus decreasing the responsiveness of these cells to physiological agonists. However, the impact of DHEA-S and DHEA on platelet function and their possible role in modulating the response of human platelets to physiological agonists were not yet investigated. Here, DHEA-S, but not DHEA, inhibited in vitro thrombin-dependent platelet aggregation in a dose-dependent manner. DHEA-S exerted this effect by decreasing thrombin-dependent dense granule secretion, and so impairing the positive feed-back loop provided by ADP. Furthermore, DHEA-S inhibited thrombin-dependent activation of Akt, ERK1/2, and p38 MAP kinase. Although both DHEA-S and DHEA directly activated in platelets the inhibitory cGMP/PGK/VASP pathway, these events were not responsible for the inhibitory action of DHEA-S in platelets. In addition DHEA-S acted in synergism with nitric oxide in inhibiting platelet aggregation. In conclusion DHEA-S inhibited platelet activation caused by a mild stimulus without completely hampering platelet functionality and thus DHEA-S may participate in the physiological mechanisms that maintain circulating platelets in a resting state. The role played by DHEA-S could be relevant mainly when the functionality of the vascular endothelium is compromised.  相似文献   

12.
The interaction of low-density lipoprotein (LDL) with the human platelet was investigated with regard to saturable high-affinity binding, shape change, cytosolic free Ca2+ concentration, phosphatidylinositol (PtdIns) turnover, and thromboxane B2 biosynthesis. The experiments show that LDL, at a concentration approximately 100 times lower than in plasma, causes platelet activation concomitantly with stimulation of the PtdIns cycle and thromboxane B2 formation, similarly to other activators of platelets. The effects of LDL were inhibited by high-density lipoprotein. The results suggest that activation of platelets by low concentrations of LDL may play a role in pathophysiological conditions and that platelet can serve as a model for studying the influence of LDL on various target cells.  相似文献   

13.
Gramicidin S (GS) is a cyclic decapeptide antibiotic active against both Gram‐positive and Gram‐negative bacteria as well as against several pathogenic fungi. However, clinical application of GS is limited because of GS hemolytic activity. The large number of GS analogues with potentially attenuated hemolytic activity has been developed over the last two decades. For all new GS derivatives, the antimicrobial test is accompanied with the hemolytic activity assay. At the same time, neither GS nor its analogues were tested against other blood cells. In the present work, the effects of GS on platelets and platelet aggregates have been studied. GS interaction with platelets is concentration dependent and leads either to platelet swelling or platelet shape change. Effect of GS on platelets is independent of platelet aggregation mechanism. GS induces disaggregation of platelet aggregates formed in the presence of aggregation agonists. The rate of the GS interaction with platelet membranes depends on membrane lipid mobility and significantly increases with temperature. The interaction of GS with the platelet membranes depends strongly on the state of the membrane lipids. Factors affecting the membrane lipids (temperature, lipid peroxidation and ionising irradiation) modify GS interaction with platelets. Our results show that GS is active not only against erythrocytes but also against other blood cells (platelets). The estimated numbers of GS molecules per 1 µm2 of a blood cell required to induce erythrocyte hemolysis and disaggregation of platelet aggregates are comparable. This must be considered when developing new antimicrobial GS analogues with improved hemolytic properties. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
PADGEM (platelet activation dependent granule-external membrane protein) is an integral membrane protein of the alpha granules of platelets and Weibel-Palade bodies of endothelial cells that is expressed on the plasma membrane upon cell activation and granule secretion. Activated platelets, but not resting platelets, bind to neutrophils, monocytes, HL60 cells, and U937 cells. This interaction is inhibited by anti-PADGEM antibodies, PADGEM, and EDTA; anti-GPIIb-IIIa, anti-thrombospondin, anti-GPIV, and thrombospondin produce no effect. Neutrophils and U937 cells, in contrast to Jurkatt cells, contain PADGEM recognition sites, as shown by binding of PADGEM contained in phospholipid vesicles. These results indicate that PADGEM mediates adhesion of activated platelets to monocytes and neutrophils. Therefore, PADGEM shares not only structural but also functional homology with ELAM-1 and MEL-14, members of a new family of vascular cell adhesion molecules.  相似文献   

15.
ICAM-4 (LW blood group glycoprotein) is an erythroid-specific membrane component that belongs to the family of intercellular adhesion molecules and interacts in vitro with different members of the integrin family, suggesting a potential role in adhesion or cell interaction events, including hemostasis and thrombosis. To evaluate the capacity of ICAM-4 to interact with platelets, we have immobilized red blood cells (RBCs), platelets, and ICAM-Fc fusion proteins to a plastic surface and analyzed their interaction in cell adhesion assays with RBCs and platelets from normal individuals and patients, as well as with cell transfectants expressing the alpha(IIb)beta(3) integrin. The platelet fibrinogen receptor alpha(IIb)beta(3) (platelet GPIIb-IIIa) in a high affinity state following GRGDSP peptide activation was identified for the first time as the receptor for RBC ICAM-4. The specificity of the interaction was demonstrated by showing that: (i) activated platelets adhered less efficiently to immobilized ICAM-4-negative than to ICAM-4-positive RBCs, (ii) monoclonal antibodies specific for the beta(3)-chain alone and for a complex-specific epitope of the alpha(IIb)beta(3) integrin, and specific for ICAM-4 to a lesser extent, inhibited platelet adhesion, whereas monoclonal antibodies to GPIb, CD36, and CD47 did not, (iii) activated platelets from two unrelated type-I glanzmann's thrombasthenia patients did not bind to coated ICAM-4. Further support to RBC-platelet interaction was provided by showing that dithiothreitol-activated alpha(IIb)beta(3)-Chinese hamster ovary transfectants strongly adhere to coated ICAM-4-Fc protein but not to ICAM-1-Fc and was inhibitable by specific antibodies. Deletion of individual Ig domains of ICAM-4 and inhibition by synthetic peptides showed that the alpha(IIb)beta(3) integrin binding site encompassed the first and second Ig domains and that the G65-V74 sequence of domain D1 might play a role in this interaction. Although normal RBCs are considered passively entrapped in fibrin polymers during thrombus, these studies identify ICAM-4 as the first RBC protein ligand of platelets that may have relevant physiological significance.  相似文献   

16.
We have previously shown biochemically that the physiological agonist thrombin can cause translocation of endogenous annexin V to a fraction containing all platelet membranes. This paper reports ultrastructural immunohistochemical data revealing that annexin V molecules localize with plasma membranes of blood platelets following thrombin activation. When ultrathin sections of resting platelets were examined by immunogold staining, annexin V was found to be cytosolic, having a generalized distribution throughout the platelet. After thrombin activation, annexin V became peripheral in location and plasmalemma association increased. Morphometric analysis of gold particles shows that annexin V relocates specifically to the plasma membrane and its underlying cytoskeleton following treatment with thrombin. In control platelets 6.1% +/- 0.78 of annexin V is present at the plasma membrane and 15.0% +/- 0.82 in the region corresponding to the membrane cytoskeleton (10-80 nm); after stimulation with 0.5 unit/ml thrombin for 2 min this increased to 16.7% +/- 0.22 and 40.4% +/- 0.53, respectively.  相似文献   

17.
Adhesion of platelets to the endothelium is believed to be a major factor contributing to thrombosis and vascular occlusion after radiotherapy or endovascular irradiation. In the present study, platelet-endothelium interactions were analyzed in vivo by intravital microscopy in mesenteric venules of mice according to three parameters: (1) platelet rolling, (2) platelet adhesion, and (3) the presence of platelet clusters. A 10-Gy total-body irradiation of mice resulted in an increase in the frequency of appearance of these three types of platelet-endothelium interactions in postcapillary venules 6 and 24 h after exposure, whereas only minor alterations were seen in large venules. In addition, the duration of platelet adhesion was increased 24 h after irradiation in both postcapillary and large venules. However, P-selectin was not up-regulated on the platelet membrane and platelet-leukocytes were not seen rolling together, suggesting that changes in platelet-endothelial cell interaction result from endothelial cell activation rather than platelet activation. Our data suggest that irradiation transforms resting endothelial cells to a pro-adhesive surface for platelets, which could ultimately lead to thrombosis.  相似文献   

18.
Mammalian blood platelets are activated by physiological agonists such as collagen or thrombin, or by physical stimuli such as cold temperatures and rapid decompression. Marine mammals regularly experience cold temperatures, high pressures and rapid decompression while diving, yet do not appear to suffer from thrombotic events during routine dive activity. We evaluated the effects of cold temperature and high pressure excursions on Northern Elephant Seal (NES) platelets and compared NES platelet response to that of human platelets subjected to identical stimuli. NES platelets undergo cold-induced activation when chilled to 4 °C, and 3 distinct phase transitions can be measured using Fourier Transform Infrared Spectroscopy. NES platelet membrane lipid composition was determined using thin layer chromatography and NES platelets were found to have three times the amount of cholesterol (21% by weight) as human platelets. When exposed to high pressure-rapid decompression excursion, NES platelets did not undergo morphological shape change nor bind increased amounts of fibrinogen, while human platelets were significantly activated by the same excursion. These results demonstrate that while NES platelets are activated by the physical stimulus of cold temperatures, they are resistant to decompression-induced activation. We suggest that the composition of NES platelet membranes may play an important role in preventing pressure-related activation.  相似文献   

19.
When platelets bind certain specific ligands they are induced to secrete the contents of their cytoplasmic granules and to aggregate. Studies of the molecular events accompanying this vital physiological response have led to a greater understanding of cell activation in general since the pathways involved are common to a number of cell types. By contrast most of the information about the cell surface molecules that initiate signal transduction has emerged from work on T lymphocyte activation, a process essential to the initiation of the immune response. We have described an activation antigen on T lymphocytes that is involved in the differentiation of these cells. In the present report it is demonstrated that the antigen is expressed on the platelet membrane with about 1,200 copies/platelet. A monoclonal antibody detecting this antigen stimulates platelet secretion and aggregation with a half-maximal response at approximately 10(-8) M. Characterization of the antigen, termed PTA1, reveals a glycoprotein of Mr 67,000 showing extensive N-linked carbohydrate, much of which appears to be heavily sialated. The amino-terminal sequence of PTA1, EEVLWHTSVPFAEXMSLEXVYPSM, indicates that the protein has not previously been characterized. Preliminary investigation of the mechanism by which PTA1 mediates platelet activation suggests involvement of protein kinase C and the 47-kDa protein of platelets is rapidly phosphorylated upon antibody-mediated activation. During this process PTA1 is also phosphorylated, as it is following platelet activation by the other agonists, collagen, thrombin, and 12-O-tetradecanoylphorbol 13-acetate. These results provide the first example of a cell surface glycoprotein that is directly involved in both platelet and T lymphocyte activation.  相似文献   

20.
One of the responses of platelets to stimulation is activation of intracellular calpain (the Ca(2+)-dependent protease). Previously, we have shown that activation of calpain in platelets is involved in the generation of platelet procoagulant activity. Because procoagulant activity is present on the microvesicles that are shed from activated platelets, in this study we examined whether calpain is involved in the shedding of microvesicles. Platelets were incubated with the physiological agonists collagen or thrombin. The extent of activation of calpain correlated positively with the amount of procoagulant-containing microvesicles that formed, and the shedding of procoagulant-containing microvesicles was inhibited by calpeptin, MDL, and EST (E-64-d), three membrane-penetrating inhibitors of calpain. The protein composition of the microvesicles shed from aggregating platelets was similar to that of microvesicles shed by platelets in which the association of the membrane skeleton with the plasma membrane had been disrupted by incubation of platelets with dibucaine or ionophore A23187. Furthermore, like microvesicles shed from dibucaine- or ionophore A23187-treated platelets, those shed from the aggregating platelets possessed procoagulant activity. These results are consistent with the possibility that activation of calpain in aggregating platelets causes the shedding of procoagulant-containing microvesicles. We suggest that the shedding of microvesicles results from the calpain-induced hydrolysis of the platelet membrane skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号