首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Park KS  Do H  Lee JH  Park SI  Kim Ej  Kim SJ  Kang SH  Kim HJ 《Cryobiology》2012,64(3):286-296
Previously, we reported the ice-binding protein (LeIBP) from the Arctic yeast Leucosporidium sp. AY30. In this study we provide physicochemical characterization of this IBP, which belongs to a class of IBPs that exhibited no significant similarity in primary structure to other known antifreeze proteins (AFPs). We compared native, glycosylated and non-glycosylated recombinant LeIBPs. Interestingly, size-exclusion chromatography and analytical ultracentrifugation revealed that LeIBP self-associates with a reversible dimer with K(d) values in the range 3.45-7.24×10(-6) M. Circular dichroism (CD) spectra showed that LeIBP, glycosylated or non-glycosylated, is predominantly composed of β-strand secondary structural elements (54.6%), similar to other β-helical antifreeze proteins (AFPs). In thermal hysteresis (TH) activity measurements, native LeIBP was twice more active (0.87 °C at 15 mg/mL) than that of the recombinant IBPs (0.43-0.42 °C at 10.8 mg/mL). This discrepancy is probably due to uncharacterized enhancing factors carried over during ice affinity purification, because glycosylated and non-glycosylated recombinant proteins displayed similarly low activity. Ice recrystallization inhibition (RI) activities of the native and recombinant LeIBPs were comparable. Measurements of CD, TH activity, and RI showed that glycosylation does not cause structural changes and is not required for function. An ice-etching experiment using green fluorescent protein-tagged IBP revealed that LeIBP binds, just as hyperactive AFPs, to both basal and pyramidal prism planes of the ice crystal. Taken together, our results indicate that LeIBP, structurally similar to hyperactive AFPs, is moderately active and that a reversible dimer has no effect on its activity.  相似文献   

2.
Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and alpha cells select axial sites; a/alpha cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an alpha strain using pseudohyphal growth as an assay. We found that a and alpha mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345-1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane.  相似文献   

3.
The post-translational modification of proteins by the covalent attachment of carbohydrates to specific side chains, or glycosylation, is emerging as a crucial process in modulating the function of proteins. In particular, the dynamic processing of the oligosaccharide can correlate with a change in function. For example, a potent macrophage-activating factor, Gc-MAF, is obtained from serum vitamin D binding protein (VDBP) by stepwise processing of the oligosaccharide attached to Thr 420 to the core alpha-GalNAc moiety. In previous work we designed a miniprotein analog of Gc-MAF, MM1, by grafting the glycosylated loop of Gc-MAF on a stable scaffold. GalNAc-MM1 showed native-like activity on macrophages (Bogani 2006, J. Am. Chem. Soc. 128 7142-43). Here, we present data on the thermodynamic stability and conformational dynamics of the mono- and diglycosylated forms. We observed an unusual trend: each glycosylation event destabilized the protein by about 1 kcal/mol. This effect is matched by an increase in the mobility of the glycosylated forms, as evaluated by molecular dynamics simulations. An analysis of the solvent-accessible surface area shows that glycosylation causes the three-helix bundle to adopt conformations in which the hydrophobic residues are more solvent exposed. The number of hydrophobic contacts is also affected. These two factors, which are ultimately explained with a change in occupancy for conformers of specific side chains, may contribute to the observed destabilization.  相似文献   

4.
N-Acetylglucosaminyltransferase (GnT)-III catalyzes the attachment of an N-acetylglucosamine (GlcNAc) residue to mannose in beta(1-4) configuration in the region of N-glycans and forms a bisecting GlcNAc. To investigate the pathophysiological role of dysregulated glycosylation mediated by aberrantly expressed GnT-III, we generated transgenic mice hyperexpressing the human GnT-III in the liver by introducing human GnT-III cDNA under the control of mouse albumin enhancer/promoter. Total five transgenic founder mice (pGnTSVTpA-10, -14, -20, -25, and -51) expressed the human GnT-III in their livers and were characterized by molecular genetic means. The copy number of transgene integrated into the genome of these mice ranged between 1 and 3 copies per haploid genome. Northern and Western blot analyses showed that the transgene is specifically expressed in the liver but not in any other tissues tested. The triglyceride level in GnT-III transgenic mice was significantly decreased, however, no significant differences in the levels of glucose, cholesterol, or albumin were observed between transgenic and nontransgenic mice. Although glutamate oxaloacetic transaminase and glutamic pyruvic transaminase activities of transgenic mice were also higher than those of nontransgenic mice, no differences in total bililubin and total protein were observed between the two animal lines. Large amounts of apolipoprotein (Apo) A-I and Apo B were specifically detected in the intracellular liver of transgenic mice. The accumulation of Apo A-I in hepatocytes may be due to aberrant glycosylation, since glycosylated Apo A-I was not observed in transgenic mice. However, the accumulated Apo B was severely glycosylated. Therefore, it is suggested that highly expressed transgenic GnT-III allowed unknown target proteins to be glycosylated in large amounts, and the resulting target protein(s) disrupted in assembly formation of Apo A-I in the hepatocytes and cause a decrease in the release of lipoproteins and accumulations of Apo A-I and Apo B in the liver. The transgenic mice showed aberrant glycosylation by GnT-III, resulting in numerous lipid droplets in liver tissues and the obesity. These mice showed microvesicular fatty changes with abnormal lipid accumulation in the hepatocytes. Our study provides the basis for future analysis of the role of glycosylation in hepatic pathogenesis. In the transgenic mice, Apo A-I and Apo B were significantly increased compared with levels in nontransgenic liver tissues.  相似文献   

5.
Pili (type IV fimbriae) of Neisseria meningitidis are glycosylated by the addition of O-linked sugars. Recent work has shown that PglF, a protein with homology to O-antigen 'flippases', is required for the biosynthesis of the pilin-linked glycan and suggests pilin glycosylation occurs in a manner analogous to the wzy-dependent addition of O-antigen to the core-LPS. O-Antigen ligases are crucial in this pathway for the transfer of undecraprenol-linked sugars to the LPS-core in Gram-negative bacteria. An O-antigen ligase homologue, pglL, was identified in N. meningitidis. PglL mutants showed no change in LPS phenotypes but did show loss of pilin glycosylation, confirming PglL is essential for pilin O-linked glycosylation in N. meningitidis.  相似文献   

6.
The Duffy antigen/receptor for chemokines (DARC) is a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group antigen. The polypeptide chain of DARC contains two NSS motifs at positions 16 and 27 and one NDS motif at position 33 that represent canonical sequences for efficient N-glycosylation. To verify whether all of these three sites are occupied by a sugar chain, we generated mutants in which potential N-glycosylation sites (AsnXSer) were removed by replacement of serine by alanine. Seven DARC glycosylation variants, missing one (S18A, S29A, S35A), two (S18A.S29A, S18A.S35A, S29A.S35A), or three (S18A.S29A.S35A) glycosylation sites, were obtained. cDNA encoding DARC mutants was cloned into the eukaryotic expression vector pcDNA3.1/myc-HisA and expressed in human K562 cells. Stable transfectants expressing wild-type or mutated forms of Duffy were then lysed, purified by metal-affinity chromatography, and subjected to Western blots with an anti-Duffy monoclonal antibody. The gel electrophoresis data indicate that all three canonical sites are used for sugar attachment.  相似文献   

7.
Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein, which by similarity contains seven EGF-like domains and a lipid-binding GPI-anchor site at the C-terminal region. The primary structure of the recombinant (rBm95) protein expressed in Pichia pastoris was completely verified by LC/MS. The four potential glycosylation sites (Asn 122, 163, 329, and 363) are glycosylated partially with short N-glycans, from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) of which, Man(8-9)GlcNAc(2) were the most abundant. O-Glycopeptides are distributed mostly towards the protein N-terminus. While the first N-glycosylated site (Asn(122)) is located between EGF-like domains 2 and 3, where the O-glycopeptides were found, two other N-glycosylated sites (Asn(329) and Asn(363)) are located between EGF-like domains 5 and 6, a region devoid of O-glycosylated Ser or Thr.  相似文献   

8.
Chambery A  Di Maro A  Parente A 《Phytochemistry》2008,69(10):1973-1982
Seeds from Phytolacca dioica L. contain at least three N-glycosylated PD-Ss, type 1 ribosome-inactivating proteins (RIPs), which were separated and purified to homogeneity by conventional chromatographic techniques. ESI-Q-TOF mass spectrometry provided the accurate M(r) of native PD-S1 and PD-S3 (30957.1 and 29785.1, respectively) and the major form PD-S2 (30753.8). As the amino acid sequence of PD-S2 was already known, its disulfide pairing was determined and found to be Cys34-Cys262 and Cys88-Cys110. Further structural characterization of PD-S1 and PD-S3 (N-terminal sequence determination up to residue 30, amino acid analysis and tryptic peptide mapping) showed that the three PD-Ss shared the entire protein sequence. To explain the different chromatographic behaviour, their glycosylation patterns were characterized by a fast and sensitive mass spectrometry-based approach, applying a precursor ion discovery mode on a Q-TOF mass spectrometer. A standard plant paucidomannosidic N-glycosylation pattern [Hex(3), HexNAc(2), deoxyhexose(1), pentose(1)] was found for PD-S1 and PD-S2 on Asn120. Furthermore, a glycosylation site carrying only a HexNAc residue was identified on Asn112 in PD-S1 and PD-S3. Finally, considering the two disulfide bridges and the glycan moieties, the experimental M(r) values were in agreement with the mass values calculated from the primary structure. The complete characterization of PD-Ss shows the high potential of mass spectrometry to rapidly characterize proteins, widespread in eukaryotes, differing only in their glycosylation motifs.  相似文献   

9.
Naturally occurring glycopeptides and glycoproteins usually contain more than one glycosylation site, and the structure of the carbohydrate attached is often different from site to site. Therefore, synthetic methods for preparing peptides and proteins that are glycosylated at multiple sites, possibly with different carbohydrate structures, are needed. Here, we report a chemo-enzymatic approach for accomplishing this. Complex-type oligosaccharides were introduced to the calcitonin derivatives that contained two N-acetyl-D-glucosamine (GlcNAc) residues at different sites by treatment with Mucor hiemalis endo-beta-N-acetylglucosaminidase. Using this enzymatic transglycosylation reaction, three glycopeptides were produced, a calcitonin derivative with the same complex-type carbohydrate at two sites, and two calcitonin derivatives each with one complex-type carbohydrate and one GlcNAc. Starting from the derivatives with one complex-type carbohydrate and one GlcNAc, a high-mannose-type oligosaccharide was successfully transferred to the remaining GlcNAc using another endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae. Thus, we were able to obtain glycopeptides containing not only two complex-type carbohydrates, but also both complex and high-mannose-type oligosaccharides in a single molecule. Using the resultant glycosylated calcitonin derivatives, the effects of di-N-glycosylation on the structure and the activity of calcitonin were studied. The effect appeared to be predictable from the results of mono-N-glycosylated calcitonin derivatives.  相似文献   

10.
TRPM8 member of the TRP superfamily of membrane proteins participates to various cellular processes ranging from Ca2+ uptake and cold sensation to cellular proliferation and migration. TRPM8 is a large tetrameric protein with more than 70% of its residues located in the cytoplasm. TRPM8 is N-glycosylated, with a single site per subunit. This work focuses on the N-glycosylation of TRPM8 channel that was previously studied by our group in relation to proliferation and migration of tumoral cells. Here, experimental data performed with deglycosylating agents assess that the sole glycosylation site contains complex glycans with a molecular weight of 2.5 kDa. The glycosylation state of TRPM8 in cells untreated and treated with a deglycosylating agent was addressed with Terahertz (THz) spectroscopy. Results show a clear difference between cells comprising glycosylated and deglycosylated TRPM8, the first presenting an increased THz absorption. Human TRPM8 was modelled using as templates the available TRPM8 and other TRPM channels structures. Glycosylations were modelled by considering two glycan structures with molecular weight close to the experiment: shorter and branched at the first sugar unit (glc1) and longer and unbranched (glc2). Simulation of THz spectra based on the molecular dynamics of unglycosylated and the two glycosylated TRPM8 models in lipid membrane and solvation box showed that glycan structure strongly influences the THz spectrum of the channel and of other components from the simulation system. Only spectra of TRPM8 with glc1 glycans were in agreement with the experiment, leading to the validation of glc1 glycan structure.  相似文献   

11.
A variety of distinct protein glycosylation reactions occur in the endoplasmic reticulum (ER) of eukaryotic cells. In some instances, both the proteins to be glycosylated and the precursor sugar donors must be translocated across the membrane from the cytoplasm to the lumen of the ER. Elucidation of the individual steps in each of the glycosylation pathways has revealed the topographic complexity of these reactions.  相似文献   

12.
O-Glycosylation is emerging as a common posttranslational modification of surface exposed proteins in bacterial mucosal pathogens. In pathogenic Neisseria an O-glycosylation pathway modifies a single abundant protein, pilin, the subunit protein that forms pili. Here, we identify an additional outer membrane glycoprotein in pathogenic Neisseria, the nitrite reductase AniA, that is glycosylated in its C-terminal repeat region by the pilin glycosylation pathway. To our knowledge, this is the first report of a general O-glycosylation pathway in a prokaryote. We also show that AniA displays polymorphisms in residues that map to the surface of the protein. A frame-shift mutation abolishes AniA expression in 34% of Neisseria meningitidis strains surveyed, however, all Neisseria gonorrhoeae strains examined are predicted to express AniA, implying a crucial role for AniA in gonococcal biology.  相似文献   

13.
The hexosamine biosynthesis pathway plays a role in the modification of cellular proteins via the provision of substrate for addition of O-linked N-acetylglucosamine (GlcNAc). The relative importance of the GlcNAc modification of proteins to insulin secretion from pancreatic beta-cells has not been investigated and so remains unclear. In the present study, we show that inhibition of the hexosamine biosynthesis pathway decreases insulin secretion from mouse islets in response to a number of secretagogues, including glucose. This impairment in beta-cell function could not be attributed to reduced islet insulin content, altered ATP levels, or cell death and was restored with the addition of N-acetylglucosamine, a substrate that enters the pathway below the point of inhibition. Western blot analysis revealed that decreased islet protein glycosylation paralleled the decrease in insulin secretion following inhibition of the pathway. In conclusion, the data suggest a role for the hexosamine biosynthesis pathway in regulating the secretion of insulin by altering protein glycosylation. This finding may have implications for the development of type 2 diabetes, as chronic increase in flux through the hexosamine biosynthesis pathway may lead to the deterioration of beta-cell function via abnormal protein glycosylation.  相似文献   

14.
Medicinal plants are extensively utilized in traditional and herbal medicines, both in India and around the world due to the presence of diverse low molecular weight natural products such as flavonoids, alkaloids, terpenoids and sterols. Flavonoids which have health benefits for humans are the large class of phenylpropanoid-derived secondary metabolites and are mostly glycosylated by UDP-glycosyltransferases (UGTs). Although large numbers of different UGTs are known from higher plants, very few protein structures have been reported till now. In the present study, the three-dimensional model of flavonoid specific glycosyltransferases (WsFGT) from Withania somnifera was constructed based on the crystal structure of plant UGTs. The resulted model was assessed by various tools and the final refined model revealed GT-B type fold. Further, to understand the sugar donors and acceptors interactions with the active site of WsFGT, docking studies were performed. The amino acids from conserved PSPG box were interacted with sugar donor while His18, Asp110, Trp352 and Asn353 were important for catalytic function. This structural and docking information will be useful to understand the glycosylation mechanism of flavonoid glucosides.

Abbreviations

DOPE - Discrete Optimized Potential Energy, PDB - Protein Data Bank, PSPG - Plant Secondary Product Glycosyltransferase, RMSD - Root Mean Squared Deviation, UDP - Uridine diphosphate, UGT - UDP-glycosyltransferases.  相似文献   

15.
Prion protein (PrP) contains two N-linked glycosylation sites. It is unknown which amino acid substitution contributes most efficiently to the abolishment of N-linked glycosylations. To define the influence of amino acid substitution at the N-linked glycosylation sites on the conversion efficiency of mouse PrP, we tested each of all 19 amino acid substitutions at either one of the N-linked glycosylation sites (codon 180, 182, 196 or 198). The conversion efficiency of the mutagenized PrP was highly dependent on the newly introduced amino acid itself regardless of the absence of N-linked glycosylation in scrapie-infected mouse neuroblastoma cells. The majority of mutant PrP with substitutions at the Asn residues of the N-linked glycosylation sites were conversion-competent, whereas most mutant PrP with substitutions at the Thr residues were conversion-incompetent. These findings emphasize that the Asn residues of the N-linked glycosylation sites are replaceable to abolish N-linked glycosylations without directly affecting the protein function.  相似文献   

16.
Glycosylation is a widespread post-translational modification found in glycoproteins. Glycans play key roles in protein folding, quality control in the endoplasmic reticulum (ER) and protein trafficking within cells. However, it remains unclear whether all positions of protein glycosylation are involved in glycan functions, or if specific positions have individual roles. Here we demonstrate the integral involvement of a specific N-glycan from amongst the three glycans present on inducible costimulator (ICOS), a T-cell costimulatory molecule, in proper protein folding and intracellular trafficking to the cell surface membrane. We found that glycosylation-defective mutant proteins lacking N-glycan at amino-acid position 89 (N89), but not proteins lacking either N23 or N110, were retained within the cell and were not detected on the cell surface membrane. Additional evidence suggested that N89 glycosylation was indirectly involved in ICOS ligand binding. These data suggest that amongst the three putative ICOS glycosylation sites, N89 is required for proper ICOS protein folding in the ER, intracellular trafficking and ligand binding activity. This study represents a substantial contribution to the current mechanistic understanding of the necessity and potential functions of a specific N-glycan among the multiple glycans of glycoproteins.  相似文献   

17.
Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state.  相似文献   

18.
The transferrin receptor of the parasite Trypanosoma brucei is a heterodimeric protein complex encoded by the 2 expression site-associated genes (ESAGs) 6 and 7. ESAG6 is a heterogeneously glycosylated protein of 50-60 kDa modified by a glycosylphosphatidylinositol anchor at the C-terminus, while ESAG7 is a 40-42 kDa glycoprotein carrying an unmodified C-terminus. In order to determine whether glycosylation is necessary for dimer formation and ligand binding, the receptor was expressed in insect cells in the presence of tunicamycin. When insect cells were infected with recombinant ESAG6/ESAG7 double expressor baculovirus and grown in the presence of tunicamycin, non-glycosylated forms of ESAG6 and ESAG7 of 46 and 36 kDa, respectively, were synthesized. The non-glycosylated ESAG6 and ESAG7 were capable of forming a heterodimer and of binding transferrin. This results shows that glycosylation is not necessary for synthesis of a functional T. brucei transferrin receptor.  相似文献   

19.
Throughout development cell-cell interactions are of pivotal importance. Cells bind to each other or share information via secreted signaling molecules. To a large degree, these processes are modulated by post-translational modifications of membrane proteins. Glycan-chains are frequently added to membrane proteins and assist their exact function at the cell surface. In addition, the glycosylation pathway is required to generate GPI-linkage in the endoplasmatic reticulum. Here, we describe the analysis of the cabrio/mummy gene, which encodes an UDP-N-acetylglucosamine diphosphorylase. This is a well-conserved and central enzyme in the glycosylation pathway. As expected from this central role in glycosylation, cabrio/mummy mutants show many phenotypic traits ranging from CNS fasciculation defects to defects in dorsal closure and eye development. These phenotypes correlate well with specific glycosylation and GPI-anchorage defects in mummy mutants.  相似文献   

20.
The effect of glycosylation on a bioactive peptide was studied using yeast Saccharomyces cerevisiae alpha-mating factor, which is composed of 13 amino acids. In this study, we prepared glycosylated alpha-mating factor by chemo-enzymatic synthesis. At first, N-acetylglucosaminyl alpha-mating factor (Trp-His-Trp-Leu-Gln(GlcNAc)-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) was chemically synthesized by the solid-phase method. Then, using the transglycosylation activity of Mucor hiemalis endo-beta-N-acetylglucosaminidase, we synthesized glycosylated alpha-mating factor with a glutamine-linked sialo complex type oligosaccharide. The biological activity of alpha-mating factor derivatives was examined by means of a growth arrest assay using secreted-protease-defective a cells of S. cerevisiae. The results showed that the bioactivity of glycosylated alpha-mating factor was lower than that of native alpha-mating factor. However, when sialic acid was removed from the complex type sugar chain of glycosylated alpha-mating factor, its bioactivity was recovered. Glycosylated alpha-mating factor exhibited higher resistance against proteolysis than native alpha-mating factor. It was found that the bioactivity of N-acetylglucosaminyl alpha-mating factor was higher than that of alpha-mating factor. Circular dichroism studies indicated that a slight change in the structure of alpha-mating factor may influence its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号