首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transcriptional trans-activating function of hepatitis B virus   总被引:43,自引:17,他引:26       下载免费PDF全文
The ability of hepatitis B virus (HBV) to stimulate the expression of a cellular gene was investigated by using a transient-expression system. A plasmid in which the expression of the bacterial chloramphenicol acetyltransferase (cat) gene had been placed under the control of the DNA sequences that regulate the expression of the human beta-interferon gene was constructed. In Vero cells, cotransfection of the 2.7-kilobase BglII DNA fragment of HBV together with the test plasmid containing the cat gene resulted in stimulation of the expression of the cat gene. This HBV DNA fragment was specific in its trans-activation; no significant stimulation of CAT activity was observed in constructs when the promoter and enhancer elements were derived from the murine sarcoma viral long terminal repeat, Rous sarcoma virus, BK virus, or simian virus 40. Results of subcloning of the HBV DNA fragment indicate that the trans-activating function resides in a 944-base-pair EcoRV-BglII DNA fragment of the HBV genome that contains the X structural gene and its promoter element. Removal of the promoter from the X structural gene resulted in loss of the trans-activating function. A frameshift mutation within the X gene region also eliminated the trans-activating activity. These results suggest that the X antigen could play a role in HBV infections by activating the expression of cellular genes.  相似文献   

2.
3.
DNA rearrangements in the form of deletions and duplications are found within and near integrated simian virus 40 (SV40) DNA in nonpermissive cell lines. We have found that rearrangements also occur frequently with integrated pSV2neo plasmid DNA. pSV2neo contains the entire SV40 control region, including the origin of replication, both promoters, and the enhancer sequences. Linearized plasmid DNA was electroporated into X1, an SV40-transformed mouse cell line that expresses SV40 large T antigen (T Ag) and shows very frequent rearrangements at the SV40 locus, and into LMtk-, a spontaneously transformed mouse cell line that contains no SV40 DNA. Stability was analyzed by subcloning G-418-resistant clones and examining specific DNA fragments for alterations in size. Five independent X1 clones containing pSV2neo DNA were unstable at both the neo locus and the T Ag locus. By contrast, four X1 clones containing mutants of pSV2neo with small deletions in the SV40 core origin and three X1 clones containing a different neo plasmid lacking SV40 sequences were stable at the neo locus, although they were still unstable at the T Ag locus. Surprisingly, five independent LMtk- clones containing pSV2neo DNA were unstable at the neo locus. LMtk- clones containing origin deletion mutants were more stable but were not as stable as the X1 clones containing the same plasmid DNA. We conclude that the SV40 origin of replication and early control region are sufficient viral components for the genomic instability at sites of SV40 integration and that SV40 T Ag is not required.  相似文献   

4.
Activation of an enhancerless gene by chromosomal integration.   总被引:6,自引:3,他引:3       下载免费PDF全文
Expression of enhancerless (E-) and enhancer-containing (E+) genes that are chromosomally integrated was examined. An E- plasmid (pE-cat) containing a chloramphenicol acetyltransferase (cat) gene linked to the simian virus 40 (SV40) early promoter or its E+ counterpart plasmid (pE+-cat) containing the SV40 enhancer was cotransfected into thymidine kinase (TK)-deficient L cells with a cloned tk gene. A number of TK+ transformants were isolated, and expression of the cointegrated cat gene in these cell lines was quantitatively determined by the assay of CAT activity. The results indicated unexpectedly that the E- cat gene was as actively expressed as the E+ cat gene. Analysis of CAT mRNA by primer extension indicated that the E- cat gene, as well as the E+ cat gene, was transcribed from the "native" initiation site contained in the SV40 early promoter region. The active expression of the E- cat gene was maintained in secondary TK+ transformants that arose by transfection with genomic DNA from the primary transformant. These results suggest that expression of the integrated E- cat gene is activated by endogenous enhancer elements.  相似文献   

5.
6.
Studies were performed to examine the effects of 2,6,10,14-tetramethyl pentadecane (pristane) versus 12-O-tetradecanoylphorbol 13-acetate (TPA) on the activation of the CAT gene under the regulatory control of viral promoter/enhancer elements transfected into NIH-3T3, CV-1 and COS-7 cells. The results of these studies demonstrated that (1) pristane or TPA induced trans-activation of SV2cat, HIVcat, RSVcat and MMTVcat in cells transfected with each respective plasmid construct, (2) only pristane induced activation of pA10cat and pOSP/11 and (3) neither TPA nor pristane trans-activated pSV0cat. Furthermore, treatment with either pristane or TPA elicited changes in the morphology of each of the cell lines. Collectively these results indicate that pristane is a potent inducer of gene expression and exhibits similar characteristics as the tumor promoter, TPA.  相似文献   

7.
A new series of double-selection plasmids containing recombinant genes expressing the neomycin phosphotransferase (NEO) of transposon Tn5 and mouse dihydrofolate reductase (DHFR) in mammalian cells is described. Activity of the recombinant DHFR gene varied more than 50-fold, depending on the location of the simian virus 40 72 base-pair repeat or enhancer, which is part of the promoter of the NEO unit. A NEO-DHFR module with the enhancer located at the 3' end of the DHFR gene was inserted into a plasmid containing four tandem head-to-tail copies of the hepatitis B virus (HBV) genome and the new plasmid was used to transform DHFR- Chinese hamster ovary cells. In one of the cell lines obtained, an unrearranged copy of the HBV tetramer could be amplified 300-fold by increasing selective pressure with methotrexate, resulting in a proportional increase of the synthesis of HBV surface antigen. Four different mRNAs detected in the amplified cell line probably encode HBV core protein, pre-S and surface antigens, and the X protein. As a result of the DNA amplification, synthesis of HBV proteins is no longer restricted to resting cells. Integrated plasmid sequences appear to be stable during the amplification process.  相似文献   

8.
9.
10.
Enhanced gene expression by the poly(dT-dG).poly(dC-dA) sequence.   总被引:43,自引:14,他引:43  
  相似文献   

11.
12.
Using a plasmid bearing chloramphenicol acetyltransferase (CAT) gene controlled by Simian virus 40 (SV40) early promoter/enhancer complex (pA0cat), we analyzed functional enhancer motifs in 3T3-L1 fibroblast and adipocyte cells. Deletion mutant series of pA0 at the enhancer complex showed that gene expression both in fibroblast and adipocyte cells was dependent on a similar set of enhancer motifs. When pA0 was introduced into 3T3-L1 fibroblasts and the cells were induced to differentiate into adipocytes, CAT activity expressed in fibroblasts was suppressed. Experiments with the deletion mutants at the enhancer complex showed that the suppression was not related to any enhancer motif, and CAT activity was observed with a plasmid having only the promoter sequence. When pA0cat was co-transfected with excess of promoter sequence, the suppression in adipocytes was counteracted. This suggested that negativetrans-acting factors of the promoter sequence were responsible for the suppression in adipocytes.Abbreviations CAT chloramphenicol acetyltransferase - CAT the gene encoding CAT - SV40 Simian virus 40 - Asc-P ascorbic acid phosphate  相似文献   

13.
pSV2Neo, a plasmid that contains the wild-type simian virus 40 (SV40) origin of replication (ori), is widely used in mammalian cell transfection experiments. We observed that pSV2Neo transforms two nontumorigenic SV40-immortalized human uroepithelial cell lines (SV-HUC and CK/SV-HUC2) to G418 resistance (G418r) at a frequency lower than that at which it transforms SV-HUC tumorigenic derivatives (T-SV-HUC). Transient expression studies with the chloramphenicol transferase assay showed that these differences could not be explained by differences in Neo gene expression. However, when we replaced the SV40 ori in pSV2Neo with a replication-defective ori to generate G13.1Neo and G13.1'Neo, the G418r transformation frequency of the SV40-immortalized cell lines was elevated. Because SV40 T antigen stimulates replication at its ori, we tested plasmid replication in these transfected cell lines. The immortalized cell lines that showed low G418r transformation frequencies after transfection with pSV2Neo showed high levels of plasmid replication, while the T-SV-HUC that showed high G418r transformation frequencies failed to replicate pSV2Neo. To determine whether differences in the status of the T-antigen gene contributed to the phenomenon, we characterized the T-antigen gene in these cell lines. The results showed that the T-SV-HUC had sustained mutations in the T-antigen gene that would interfere with the ability of the T antigen to stimulate replication at its ori. Most T-SV-HUC contained a super-T-antigen replication-defective ori that apparently resulted from the partial duplication of SV40 early genes, but one T-SV-HUC had a point mutation in the ori DNA-binding domain of the T-antigen gene. These results correlate with the high G418r transformation frequencies with pSV2Neo in T-SV-HUC compared with SV-HUC and CK/SV-HUC2. Furthermore, these results suggest that alterations in SV40 T antigen may be important in stabilizing human cells immortalized by SV40 genes that contain the wild-type SV40 ori, thus contributing to tumorigenic transformation. This is the first report of a super T antigen occurring in human SV40-transformed cells.  相似文献   

14.
15.
Simian virus 40 (SV40) was isolated from the brains of three rhesus monkeys and the kidneys of two other rhesus monkeys with simian immunodeficiency virus-induced immunodeficiency. A striking feature of these five cases was the tissue specificity of the SV40 replication. SV40 was also isolated from the kidney of a Taiwanese rock macaque with immunodeficiency probably caused by type D retrovirus infection. Multiple full-length clones were derived from all six fresh SV40 isolates, and two separate regions of their genomes were sequenced: the origin (ori)-enhancer region and the coding region for the carboxy terminus of T antigen (T-ag). None of the 23 clones analyzed had two 72-bp enhancer elements as are present in the commonly used laboratory strain 776 of SV40; 22 of these 23 clones were identical in their ori-enhancer sequences, and these had only a single 72-bp enhancer element. We found no evidence for differences in ori-enhancer sequences associated with tissue-specific SV40 replication. The T-ag coding sequence that was analyzed was identical in all clones from kidney. However, significant variation was observed in the carboxy-terminal region of T-ag in SV40 isolated from brain tissues. This sequence variation was located in a region previously reported to be responsible for SV40 host range in cultured cell lines. Thus, SV40 appears to be an opportunistic pathogen in the setting of simian immunodeficiency virus-induced immunodeficiency, similarly to JC virus in human immunodeficiency virus-infected humans, the enhancer sequence organization generally attributed to SV40 is not representative of natural SV40 isolates, and sequence variation near the carboxy terminus of T-ag may play a role in tissue-specific replication of SV40.  相似文献   

16.
A hybrid adeno-associated virus (AAV)/simian virus 40 (SV40) genome is described. In this construct SV40 regulatory sequences, including the early promoter/enhancers and origin of DNA replication, were substituted for the AAV p5 promoter, which normally controls expression of the AAV rep gene. The hybrid genome was phenotypically indistinguishable from wild-type AAV in human cells in the presence or absence of helper virus. Upon transfection into cos-7 cells, which constitutively produced the SV40 tumor antigen, the genome replicated as a plasmid when the SV40 origin was used, although with a low efficiency compared with that of a non-AAV/SV40 replicon. The low level of replication was due to an inhibitory effect of an AAV rep gene product and was specific for replicons containing AAV sequences. Target AAV sequences required for inhibition by rep appeared to reside in the terminal repetitions since deletion of these sequences allowed efficient replication in the presence of the rep gene. The possible role for negative autoregulation of AAV DNA replication in latent infection and helper-dependent replication by AAV is discussed.  相似文献   

17.
18.
19.
狂犬病毒糖蛋白DNA疫苗的研制及其免疫效果的观察   总被引:6,自引:0,他引:6  
构建了含有狂犬病毒(RV)CVS株糖蛋白(GP)基因的重组质粒pCMVCVSRG,将其转染至鼠NIH3T3细胞中,用间接免疫荧光法和APAAP法均证实RVGP能在真核细胞中表达。分别将合RV不同毒株的GP基因的质粒(DNA疫苗)及空白载体质粒(对照组)免疫小鼠,仅DNA疫苗免疫的小鼠产生了中和抗体。以RV攻击后,DNA疫苗免疫组小鼠的存活率与对照组相比,差异有极显著性意义(P<0.01);不同的启动子(CMV或SV40)与不同GP基因(来源于CVS株或ERA株)对DNA疫苗的免疫效果无明显影响。在注射120d后.用PCR方法仍可检测出RVGP基因。结果表明:狂犬病DNA疫苗能够诱生低水平的中和抗体和记忆性B淋巴细胞,并能保护小鼠抵抗RV的攻击。该疫苗能在体内稳定存在。狂犬病DNA疫苗的研制为狂犬病免疫开辟了一条新途径,并可为防治其他疾病的DNA疫苗的研制奠定基础。  相似文献   

20.
We wished to determine whether simian virus 40 (SV40)-transformed xeroderma pigmentosum cells, despite their defective DNA repair, were suitable for DNA-mediated gene transfer experiments with linked genes. Expression of a nonselectable gene (cat, coding for chloramphenicol acetyltransferase [CAT]) linked to a selectable gene (gpt, coding for xanthine-guanine phosphoribosyltransferase [XPRT]) in the plasmid pSV2catSVgpt was quantified after transfection of SV40-transformed xeroderma pigmentosum [XP20s(SV40)] and normal human [GM0637(SV40)] fibroblast cell lines. A novel autoradiographic assay with [3H]xanthine incorporation showed 0.5 to 0.7% phenotypic expression of XPRT in both cell lines. Without selection, transient CAT activity was 20 times greater in the GM0637(SV40) than in the XP20s(SV40) cells, and transient XPRT activity was 5 times greater. Both of these transient activities were increased and equalized in both cell lines by transfection with pRSVcat or pRSVgpt. Genotypic transformation to gpt+ occurred at a frequency of 2 X 10(-4) to 4 X 10(-4) in both cell lines with pSV2catSVgpt. After 2 to 3 months in selective medium, stable expression of the (nonselected) cat gene was found in 11 (92%) of 12 gpt-containing clones derived from GM0637(SV40) cells and in 13 (81%) of 16 gpt-containing clones from XP20s(SV40) cells. However, the levels of CAT activity did not correlate with those of XPRT activity, and both of these activities varied more than 100-fold among different clones. Copies (1 to 4) of the gpt gene were integrated in four clones of the GM0637(SV40) cells having an XPRT activity of 1 to 5 nmol/min per mg, but 5 to 80 copies were integrated in four XP20s(SV40) clones with an XPRT activity of 0.8 to 1.8 nmol/min per mg. This study shows that XP20s(SV40) is as suitable for gene transfer experiments as the normal human line GM0637(SV40).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号