首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.  相似文献   

2.
Biotinylated gramicidins are an important component of the AMBRI® “ion channel switch™” biosensor. These gramicidin A (gA) analogues have a biotin attached to the C-terminus of gA via a number of aminocaproyl linker groups (X). The structure of gA5XB has been determined in deuterated sodium dodecyl sulfate micelles and is similar to native gA and other modified gA analogues. The biotin and aminocaproyl groups were mobile and located in the aqueous phase and when avidin was added, NMR and MS studies showed that gA5XB bound more effectively to avidin than gA2XB. The length and flexibility of the linker appears to be important for biotin–avidin binding and, in the AMBRI® biosensor, gA5XB is a more effective gated ion channel than gA2XB. The conformation and dynamics of the aminocaproyl linker groups were investigated using 2H solid-state NMR. Deuterated aminocaproyl linkers were coupled to gA and incorporated into oriented bilayers in order to analyse the order and dynamics of the aminocaproyl linker. The small 2H splittings and the T 1 relaxation times indicated that the aminocaproyl linker is undergoing fast rotation in phospholipid bilayers. Native d 4 -gA as well as d 4 -gA2XB, where the ethanolamine has been deuterated, were also incorporated into oriented bilayers. Solid-state 2H NMR data showed that the addition of the linker group restricted the mobility of the ethanolamine. However, these modifications to the C-terminus of gA did not interfere with ion channel function and clarify how the biotinylated gA analogues perform in the lipid bilayer as part of the AMBRI® biosensor.Australian Peptide Conference Issue.  相似文献   

3.
Pardaxins are a class of ichthyotoxic peptides isolated from fish mucous glands. Pardaxins physically interact with cell membranes by forming pores or voltage-gated ion channels that disrupt cellular functions. Here we report the high-resolution structure of synthetic pardaxin Pa4 in sodium dodecylphosphocholine micelles, as determined by (1)H solution NMR spectroscopy. The peptide adopts a bend-helix-bend-helix motif with an angle between the two structure helices of 122 +/- 9 degrees , making this structure substantially different from the one previously determined in organic solvents. In addition, paramagnetic solution NMR experiments on Pa4 in micelles reveal that except for the C terminus, the peptide is not solvent-exposed. These results are complemented by solid-state NMR experiments on Pa4 in lipid bilayers. In particular, (13)C-(15)N rotational echo double-resonance experiments in multilamellar vesicles support the helical conformation of the C-terminal segment, whereas (2)H NMR experiments show that the peptide induces considerable disorder in both the head-groups and the hydrophobic core of the bilayers. These solid-state NMR studies indicate that the C-terminal helix has a transmembrane orientation in DMPC bilayers, whereas in POPC bilayers, this domain is heterogeneously oriented on the lipid surface and undergoes slow motion on the NMR time scale. These new data help explain how the non-covalent interactions of Pa4 with lipid membranes induce a stable secondary structure and provide an atomic view of the membrane insertion process of Pa4.  相似文献   

4.
The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane.  相似文献   

5.
Subtilosin A is an antimicrobial peptide produced by the soil bacterium Bacillus subtilis that possesses bactericidal activity against a diverse range of bacteria, including Listeria monocytogenes. Recent structural studies have found that subtilosin A is posttranslationally modified in a unique way, placing it in a new class of bacteriocins. In this study, in order to understand the mechanism of membrane-disruption by subtilosin A, the interaction of the peptide with model phospholipid bilayers is characterized using fluorescence, solid-state NMR and differential scanning calorimetry (DSC) experiments. Our results in this study show that subtilosin A interacts with the lipid head group region of bilayer membranes in a concentration dependent manner. Fluorescence experiments reveal the interaction of subtilosin A with small unilamellar vesicles (SUVs) composed of POPC, POPG and E. coli total lipids, and that at least one edge of the molecule is buried in membrane bilayers. At high concentrations, it induces leakage from SUVs of POPC and POPE/POPG (7:3) mixture. (15)N solid-state NMR data suggests that the cyclic peptide is partially inserted into bilayers, which is in agreement with the fluorescence data. (31)P and (2)H NMR experiments and DSC data support the hypothesis that subtilosin A adopts a partially buried orientation in lipid bilayers, by showing that it induces a conformational change in the lipid headgroup and disordering in the hydrophobic region of bilayers. These results suggest that the lipid perturbation observed in this study may be one of the consequences of subtilosin A binding to lipid bilayers, which results in membrane permeabilization at high peptide concentrations.  相似文献   

6.
To understand the molecular mechanisms of amphiphilic membrane-active peptides, one needs to study their interactions with lipid bilayers under ambient conditions. However, it is difficult to control the pH of the sample in biophysical experiments that make use of mechanically aligned multilamellar membrane stacks on solid supports. HPLC-purified peptides tend to be acidic and can change the pH in the sample significantly. Here, we have systematically studied the influence of pH on the lipid interactions of the antimicrobial peptide PGLa embedded in oriented DMPC/DMPG bilayers. Using solid-state NMR (31P, 2H, 19F), both the lipid and peptide components were characterized independently, though in the same oriented samples under typical conditions of maximum hydration. The observed changes in lipid polymorphism were supported by DSC on multilamellar liposome suspensions. On this basis, we can present an optimized sample preparation protocol and discuss the challenges of performing solid-state NMR experiments under controlled pH. DMPC/DMPG bilayers show a significant up-field shift and broadening of the main lipid phase transition temperature when lowering the pH from 10.0 to 2.6. Both, strongly acidic and basic pH, cause a significant degree of lipid hydrolysis, which is exacerbated by the presence of PGLa. The characteristic re-alignment of PGLa from a surface-bound to a tilted state is not affected between pH of 7 to 4 in fluid bilayers. On the other hand, in gel-phase bilayers the peptide remains isotropically mobile under acidic conditions, displays various co-existing orientational states at pH 7, and adopts an unknown structural state at basic pH.  相似文献   

7.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

8.
Limited uncoupling of oxidative phosphorylation could be beneficial for cells by preventing excessive generation of reactive oxygen species. Typical uncouplers are weak organic acids capable of permeating across membranes with a narrow gap between efficacy and toxicity. Aimed at designing a nontoxic uncoupler, the protonatable amino acid residue Glu was substituted for Val at the N-terminus of the pentadecapeptide gramicidin A (gA). The modified peptide [Glu1]gA exhibited high uncoupling activity in isolated mitochondria, in particular, abolishing membrane potential at the inner mitochondrial membrane with the same or even larger efficacy as gA. With mitochondria in cell culture, the depolarizing activity of [Glu1]gA was observed at concentrations by an order of magnitude lower than those of gA. On the contrary, [Glu1]gA was much less potent in forming proton channels in planar lipid bilayers than gA. Remarkably, at uncoupling concentrations, [Glu1]gA did not alter cell morphology and was nontoxic in MTT test, in contrast to gA showing high toxicity. The difference in the behavior of [Glu1]gA and gA in natural and artificial membranes could be ascribed to increased capability of [Glu1]gA to permeate through membranes and/or redistribute between different membranes. Based on the protective role of mild uncoupling, [Glu1]gA and some other proton-conducting gA analogues may be considered as prototypes of prospective therapeutic agents.  相似文献   

9.
Two different stereoisomers of the dioxolane-linked gramicidin A (gA) channels were individually synthesized (the SS and RR dimers;. Science. 244:813-817). The structural differences between these dimers arise from different chiralities within the dioxolane linker. The SS dimer mimics the helicity and the inter- and intramolecular hydrogen bonding of the monomer-monomer association of gA's. In contrast, there is a significant disruption of the helicity and hydrogen bonding pattern of the ion channel in the RR dimer. Single ion channels formed by the SS and RR dimers in planar lipid bilayers have different proton transport properties. The lipid environment in which the different dimers are reconstituted also has significant effects on single-channel proton conductance (g(H)). g(H) in the SS dimer is about 2-4 times as large as in the RR. In phospholipid bilayers with 1 M [H(+)](bulk), the current-voltage (I-V) relationship of the SS dimer is sublinear. Under identical experimental conditions, the I-V plot of the RR dimer is supralinear (S-shaped). In glycerylmonooleate bilayers with 1 M [H(+)](bulk), both the SS and RR dimers have a supralinear I-V plot. Consistent with results previously published (. Biophys. J. 73:2489-2502), the SS dimer is stable in lipid bilayers and has fast closures. In contrast, the open state of the RR channel has closed states that can last a few seconds, and the channel eventually inactivates into a closed state in either phospholipid or glycerylmonooleate bilayers. It is concluded that the water dynamics inside the pore as related to proton wire transfer is significantly different in the RR and SS dimers. Different physical mechanisms that could account for this hypothesis are discussed. The gating of the synthetic gA dimers seems to depend on the conformation of the dioxolane link between gA's. The experimental results provide an important framework for a detailed investigation at the atomic level of proton conduction in different and relatively simple ion channel structures.  相似文献   

10.
Ouellet M  Doucet JD  Voyer N  Auger M 《Biochemistry》2007,46(22):6597-6606
We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.  相似文献   

11.
The proteins PLM (phospholemman), CHIF (channel inducing factor), and Mat8 (mammary tumor protein 8 kDa) are members of the FXYD family of ion transport regulatory membrane proteins. Here we describe their cloning and expression in Escherichia coli, and their purification for NMR structural studies in lipid micelles and lipid bilayers. The molecular masses of the purified recombinant FXYD proteins, determined from SDS-PAGE and from MALDI TOF mass spectrometry, reflect monomeric species. The solution NMR and CD spectra in SDS micelles show that they adopt helical conformations. The solid-state NMR spectra in lipid bilayers give the first view of their transmembrane architecture.  相似文献   

12.
Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). (13)C and (15)N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding, and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, nonideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and nonideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (?, ψ) torsion angles for three "basis" states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding, and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins.  相似文献   

13.
The thickness of monoglyceride planar bilayers has significant effects on the transfer of protons in both native gramicidin A (gA) and in covalently linked SS- and RR-dioxolane-linked gA proteins. Planar bilayers with various thicknesses were formed from an appropriate combination of monoglyceride with various fatty acid lengths and solvent. Bilayer thicknesses ranged from 25 A (monoolein in squalene) to 54 A (monoeicosenoin in decane). Single-channel conductances to protons (g(H)) were measured in the concentration range of 10-5000 mM HCl. In native gA as well as in RR channels, the shape of the log(g(H))-log([H(+)]) relationships was nonlinear and remained basically unaltered in monoglyceride bilayers with various thicknesses. For both native gA and RR channels, g(H) values were systematically and significantly larger in thin than in thick bilayers. By contrast, the shape of the log(g(H))-log([H(+)]) relationships in the SS channel was linear (with a slope considerably smaller than 1) in thick (>37 A) bilayers. However, in thin (<37 A) bilayers these plots became nonlinear and g(H) values approached those obtained in native gA channels. The linearization of the log-log plots in the SS channel in thick bilayers is a consequence of a dramatic increase (instead of a decrease as in native gA and RR channels) of g(H) in these bilayers in [H(+)] <1 M. The gating characteristics of the various gA channels as a function of bilayer thickness followed the same pattern as described previously. It was noticed, however, that in the thickest monoglyceride bilayer used in this study, both the SS- and RR-dioxolane-linked channels opened in a mode of bursting activity instead of remaining in the open state as in thin bilayers. It is proposed that the thickness of monoglyceride bilayers modulates proton transfer in native gA channels by a combination of factors including the access resistances of channels to H(+), and fluctuations in both the structure of the lipid bilayer and in the distance between gA monomers. The differential effects of relatively thick monoglyceride bilayers on proton transfer in both dioxolane-linked gA channels must relate to distinct interactions between the bilayers and the SS and RR dioxolanes.  相似文献   

14.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

15.
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.  相似文献   

16.
Membranes play key regulatory roles in biological processes, with bilayer composition exerting marked effects on binding affinities and catalytic activities of a number of membrane-associated proteins. In particular, proteins involved in diverse processes such as vesicle fusion, intracellular signaling cascades, and blood coagulation interact specifically with anionic lipids such as phosphatidylserine (PS) in the presence of Ca(2+) ions. While Ca(2+) is suspected to induce PS clustering in mixed phospholipid bilayers, the detailed structural effects of this ion on anionic lipids are not established. In this study, combining magic angle spinning (MAS) solid-state NMR (SSNMR) measurements of isotopically labeled serine headgroups in mixed lipid bilayers with molecular dynamics (MD) simulations of PS lipid bilayers in the presence of different counterions, we provide site-resolved insights into the effects of Ca(2+) on the structure and dynamics of lipid bilayers. Ca(2+)-induced conformational changes of PS in mixed bilayers are observed in both liposomes and Nanodiscs, a nanoscale membrane mimetic of bilayer patches. Site-resolved multidimensional correlation SSNMR spectra of bilayers containing (13)C,(15)N-labeled PS demonstrate that Ca(2+) ions promote two major PS headgroup conformations, which are well resolved in two-dimensional (13)C-(13)C, (15)N-(13)C, and (31)P-(13)C spectra. The results of MD simulations performed on PS lipid bilayers in the presence or absence of Ca(2+) provide an atomic view of the conformational effects underlying the observed spectra.  相似文献   

17.
Amiodarone, a potent antiarrhythmic drug, is widely used in cardiology. Its electrophysiological effects, as well as many of its side effects, seem to involve lipids. We report here a multinuclear NMR and X-ray diffraction study of amiodarone in egg phosphatidylcholine liposomes and lipid multilayers. In proton NMR experiments, amiodarone alters the signal from the lipid trimethyl ammonium group for pH values ranging from 3.2 to 8.4; cholesterol does not cause this alteration. The addition of SCN- changes both the proton and phosphorus NMR spectra of liposomes containing amiodarone. For both proton and carbon NMR, amiodarone modifies the signal from the lipid methylene groups, but to a far lesser extent than does cholesterol. Incorporation of amiodarone in EPC bilayers also modifies the low-angle X-ray diffraction patterns, decreasing the lamellar repeat period at low water contents, but swelling the fluid spaces between bilayers at high water contents. Electron density profiles and modeling studies using the X-ray data indicate that amiodarone decreases the bilayer thickness and adds electron density at the interfacial region of the bilayer. Our analysis of the NMR and X-ray data indicates that the iodine atoms of amiodarone are located near the hydrocarbon/water interface and that the tertiary amine of amiodarone is in the headgroup region of the bilayer.  相似文献   

18.
Solid-state NMR (ssNMR) represents a spectroscopic method to study membrane protein structure and dynamics in lipid bilayers. We present two-dimensional correlation experiments conducted on a fully [13C,15N] labeled version of a chimeric potassium (KcsA-Kv1.3) channel. Data obtained by using two different ion concentrations suggest a structural conservation of the selectivity filter region. SsNMR experiments conducted at two different temperatures point to differential molecular dynamics of the channel.  相似文献   

19.
Introducing a charged group near the N-terminus of gramicidin A (gA) is supposed to suppress its ability to form ion channels by restricting its head-to-head dimerization. The present study dealt with the activity of [Lys1]gA, [Lys3]gA, [Glu1]gA, [Glu3]gA, [Lys2]gA, and [Lys5]gA in model membrane systems (planar lipid bilayers and liposomes) and erythrocytes. In contrast to the Glu-substituted peptides, the lysine derivatives of gA caused non-specific liposomal leakage monitored by fluorescence dequenching of lipid vesicles loaded with carboxyfluorescein or other fluorescent dyes. Measurements of electrical current through a planar lipid membrane revealed formation of giant pores by Lys-substituted analogs, which depended on the presence of solvent in the bilayer lipid membrane. The efficacy of unselective pore formation in liposomes depended on the position of the lysine residue in the amino acid sequence, increasing in the row: [Lys2]gA < [Lys5]gA < [Lys1]gA < [Lys3]gA. The similar series of potency was exhibited by the Lys-substituted gA analogs in facilitating erythrocyte hemolysis, whereas the Glu-substituted analogs showed negligible hemolytic activity. Oligomerization of the Lys-substituted peptides is suggested to be involved in the process of nonselective pore formation.  相似文献   

20.
We have investigated the membrane interactions and dynamics of a 21-mer cytotoxic model peptide that acts as an ion channel by solid-state NMR spectroscopy. To shed light on its mechanism of membrane perturbation, 31P and 2H NMR experiments were performed on 21-mer peptide-containing bicelles. 31P NMR results indicate that the 21-mer peptide stabilizes the bicelle structure and orientation in the magnetic field and perturbs the lipid polar head group conformation. On the other hand, 2H NMR spectra reveal that the 21-mer peptide orders the lipid acyl chains upon binding. 15N NMR experiments performed in DMPC bilayers stacked between glass plates also reveal that the 21-mer peptide remains at the bilayer surface. 15N NMR experiments in perpendicular DMPC bicelles indicate that the 21-mer peptide does not show a circular orientational distribution in the bicelle planar region. Finally, 13C NMR experiments were used to study the 21-mer peptide dynamics in DMPC multilamellar vesicles. By analyzing the 13CO spinning sidebands, the results show that the 21-mer peptide is immobilized upon membrane binding. In light of these results, we propose a model of membrane interaction for the 21-mer peptide where it lies at the bilayer surface and perturbs the lipid head group conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号