首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenovibrio marinus was suggested to have only membrane-bound hydrogenase (MBH). The change of cultivation pO2 did not affect the molecular species of hydrogenase expressed. We propose the MBH is grouped in class I [NiFe] MBH according to the subunit composition, size (Mw 38,000 and Mw 74,000 subunits) and N-terminal sequences of the subunits, and arrangement of the structural genes. Ni-requirement for the autotrophic growth on H2 also suggested the MBH is the Ni-containing type. Southern hybridization analysis using a part of the MBH gene showed a possibility of the presence of two highly homologous MBHs which were not separated by SDS-PAGE.  相似文献   

2.
Hydrogenovibrio marinus was suggested to have only membrane-bound hydrogenase (MBH). The change of cultivation pO2 did not affect the molecular species of hydrogenase expressed. We propose the MBH is grouped in class I [NiFe] MBH according to the subunit composition, size (Mw 38,000 and Mw 74,000 subunits) and N-terminal sequences of the subunits, and arrangement of the structural genes. Ni-requirement for the autotrophic growth on H2 also suggested the MBH is the Ni-containing type. Southern hybridization analysis using a part of the MBH gene showed a possibility of the presence of two highly homologous MBHs which were not separated by SDS-PAGE.  相似文献   

3.
The formation of the catalytically active membrane-bound hydrogenase (MBH) of Alcaligenes eutrophus H16 requires the genes for the small and large subunits of the enzyme (hoxK and hoxG, respectively) and an accompanying set of accessory genes (C. Kortl ke, K. Horstmann, E. Schwartz, M. Rohde, R. Binsack, and B. Friedrich, J. Bacteriol. 174:6277-6289, 1992). Other genes located in the adjacent pleiotropic region are also required. In the absence of these genes, MBH is synthesized but is catalytically inactive. Immunological analyses revealed that cells containing active MBH produced the small and large subunits of the enzyme in two distinct conformations each; only one of each, presumably the immature form, occurred in cells devoid of MBH activity. The results suggest that the conversion of the two subunits into the catalytically active membrane-associated heterodimer depends on specific maturation processes mediated by hox genes.  相似文献   

4.
The oxygen-tolerant membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha H16 consists of three subunits. The large subunit HoxG carries the [NiFe] active site, and the small subunit HoxK contains three [FeS] clusters. Both subunits form the so-called hydrogenase module, which is oriented toward the periplasm. Membrane association is established by a membrane-integral cytochrome b subunit (HoxZ) that transfers the electrons from the hydrogenase module to the respiratory chain. So far, it was not possible to isolate the MBH in its native heterotrimeric state due to the loss of HoxZ during the process of protein solubilization. By using the very mild detergent digitonin, we were successful in isolating the MBH hydrogenase module in complex with the cytochrome b. H(2)-dependent reduction of the two HoxZ-stemming heme centers demonstrated that the hydrogenase module is productively connected to the cytochrome b. Further investigation provided evidence that the MBH exists in the membrane as a high molecular mass complex consisting of three heterotrimeric units. The lipids phosphatidylethanolamine and phosphatidylglycerol were identified to play a role in the interaction of the hydrogenase module with the cytochrome b subunit.  相似文献   

5.
The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na+/H+ antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na+ ions.  相似文献   

6.
Molecular features that allow certain [NiFe] hydrogenases to catalyze the conversion of molecular hydrogen (H(2)) in the presence of dioxygen (O(2)) were investigated. Using X-ray absorption spectroscopy (XAS), we compared the [NiFe] active site and FeS clusters in the O(2)-tolerant membrane-bound hydrogenase (MBH) of Ralstonia eutropha and the O(2)-sensitive periplasmic hydrogenase (PH) of Desulfovibrio gigas. Fe-XAS indicated an unusual complement of iron-sulfur centers in the MBH, likely based on a specific structure of the FeS cluster proximal to the active site. This cluster is a [4Fe4S] cubane in PH. For MBH, it comprises less than ~2.7 ? Fe-Fe distances and additional longer vectors of ≥3.4 ?, consistent with an Fe trimer with a more isolated Fe ion. Ni-XAS indicated a similar architecture of the [NiFe] site in MBH and PH, featuring Ni coordination by four thiolates of conserved cysteines, i.e., in the fully reduced state (Ni-SR). For oxidized states, short Ni-μO bonds due to Ni-Fe bridging oxygen species were detected in the Ni-B state of the MBH and in the Ni-A state of the PH. Furthermore, a bridging sulfenate (CysSO) is suggested for an inactive state (Ni(ia)-S) of the MBH. We propose that the O(2) tolerance of the MBH is mainly based on a dedicated electron donation from a modified proximal FeS cluster to the active site, which may favor formation of the rapidly reactivated Ni-B state instead of the slowly reactivated Ni-A state. Thereby, the catalytic activity of the MBH is facilitated in the presence of both H(2) and O(2).  相似文献   

7.
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O(2) and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O(2) levels. MBH-driven growth on H(2) is inhibited or retarded at high O(2) partial pressure (pO(2)) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO(2). Lack of hoxR and hoxT can phenotypically be restored by providing O(2)-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.  相似文献   

8.
Abstract In water-in-oil microemulsion the membrane-associated F420-hydrogenase of Methanobacterium thermoautotrophicum (strain Marburg) and the membrane-bound hydrogenase of Alcaligenes eutrophus H 16 (MBH) showed prolonged activity at elevated temperatures (measured as hydrogen production) as compared to aqueous buffer solution. The temperature optimum of the reactions was about 15°C higher than in aqueous buffer solution. Activity of the almost completely inactivated F420-hydrogenase could be partially recovered by transfer into microemulsion.  相似文献   

9.
10.
11.
Ralstonia eutropha (formerly Alcaligenes eutrophus) TF93 is pleiotropically affected in the translocation of redox enzymes synthesized with an N-terminal signal peptide bearing a twin arginine (S/T-R-R-X-F-L-K) motif. Immunoblot analyses showed that the catalytic subunits of the membrane-bound [NiFe] hydrogenase (MBH) and the molybdenum cofactor-binding periplasmic nitrate reductase (Nap) are mislocalized to the cytoplasm and to the inner membrane, respectively. Moreover, physiological studies showed that the copper-containing nitrous oxide reductase (NosZ) was also not translocated to the periplasm in strain TF93. The cellular localization of enzymes exported by the general secretion system was unaffected. The translocation-arrested MBH and Nap proteins were enzymatically active, suggesting that twin-arginine signal peptide-dependent redox enzymes may have their cofactors inserted prior to transmembrane export. The periplasmic destination of MBH, Nap, and NosZ was restored by heterologous expression of Azotobacter chroococcum tatA mobilized into TF93. tatA encodes a bacterial Hcf106-like protein, a component of a novel protein transport system that has been characterized in thylakoids and shown to translocate folded proteins across the membrane.  相似文献   

12.
Periplasmic membrane-bound [NiFe]-hydrogenases undergo a complex maturation pathway, including cofactor incorporation, subunit assembly, and finally twin-arginine-dependent membrane translocation (Tat). In this study, the role of the two accessory proteins HoxO and HoxQ in the maturation of the membrane-bound [NiFe]-hydrogenase (MBH) of Ralstonia eutropha H16 was investigated. MBH activity was absent in soluble as well as membrane fractions of cells with deletions in the respective genes. The absence of HoxO and HoxQ led to degradation of the small subunit precursor (preHoxK) of the MBH. The two accessory proteins directly interacted with preHoxK prior to assembly of active MBH dimer in the cytoplasm. MBH mutants with modified Tat signal peptides were disrupted in preHoxK/HoxO/HoxQ complex formation. Isolated HoxO and HoxQ proteins formed a complex in vitro with the chemically synthesized HoxK Tat signal peptide. Two functions of the two chaperones are discussed: (i) protection of the Fe-S cluster containing HoxK subunit under oxygenic conditions, and (ii) avoidance of HoxK export prior to dimerization with the large MBH subunit HoxG.  相似文献   

13.
14.
The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster.  相似文献   

15.
In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH-and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.  相似文献   

16.
Mutations in the genes coding for the soluble and the membrane-bound hydrogenase of Alcaligenes eutrophus strain H16 significantly affected the expression of respiratory chain components. In lithoautotrophically grown wild type cells electron flow mainly proceeded via the cytochrome c oxidases. Mutants defective in the membrane-bound hydrogenase contained a 2- to 3-fold higher cytochrome a content than the wild type and cytochrome c oxidase of the aa3-type was preferentially used by these cells for substrate oxidation. Mutants impaired in the soluble hydrogenase revealed slow growth on hydrogen, presumably due to inefficient reverse electron flow mechanisms which provide the cells with NADH for autotrophic CO2-fixation. In this class of mutants the two quinol oxidases of the o- and d-type in addition to the co-type oxidase were the predominant electron-transport branches.  相似文献   

17.
18.
The membrane-bound [NiFe]-hydrogenase from Allochromatium vinosum can occur in several inactive or active states. This study presents the first systematic infrared characterisation of the A. vinosum enzyme, with emphasis on the spectro-electrochemical properties of the inactive/active transition. This transition involves an energy barrier, which can be overcome at elevated temperatures. The reduced Ready enzyme can exist in two different inactive states, which are in an apparent acid–base equilibrium. It is proposed that a hydroxyl ligand in a bridging position in the Ni-Fe site is protonated and that the formed water molecule is subsequently removed. This enables the active site to bind hydrogen in a bridging position, allowing the formation of the fully active state of the enzyme. It is further shown that the active site in enzyme reduced by 1 bar H2 can occur in three different electron paramagnetic resonance (EPR)-silent states with a different degree of protonation.Abbreviations BV benzyl viologen - MB methylene blue - MBH membrane-bound hydrogenase - SHE standard hydrogen electrode  相似文献   

19.
Two membrane-bound hydrogenase isoenzymes present in Escherichia coli during anaerobic growth have been resolved. The isoenzymes are immunologically and electrophoretically distinct. The physically more abundant isoenzyme (hydrogenase 1) contains a subunit of Mr 64,000 and is not released from the membrane by exposure to either trypsin or pancreatin. The second isoenzyme (hydrogenase 2) apparently contributes the greater part of the membrane-bound hydrogen:benzyl viologen oxidoreductase activity and exists in two electrophoretic forms revealed by nondenaturing polyacrylamide gel analysis. This isoenzyme is irreversibly inactivated at alkaline pH and gives rise to an active, soluble derivative when the membrane-bound enzyme is exposed to either trypsin or pancreatin. Both hydrogenase isoenzymes contain nickel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号