首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aqueous solution structure of the 21-residue vasoactive peptide hormone endothelin-3 has been determined using high-resolution NMR spectroscopy. A total of 177 proton-proton distance measurements and 5 chi 1 dihedral angle constraints derived from NMR spectra were used to calculate the structure using a combination of distance geometry and dynamical simulated annealing calculations. The calculations reveal a highly ordered, compact conformation in which a helical region extending from K9 to C15 lies in close apposition with the C-terminal hexapeptide; this interaction seems to be largely driven by hydrophobic interactions. Structure-activity studies are interpreted in terms of the conformational features of the calculated endothelin-3 structure.  相似文献   

2.
The solution structure of the catalytic fragment of human fibroblast collagenase (MMP-1) complexed with a sulfonamide derivative of a hydroxamic acid compound (CGS-27023A) has been determined using two-dimensional and three-dimensional heteronuclear NMR spectroscopy. The solution structure of the complex was calculated by means of hybrid distance geometry-simulated annealing using a combination of experimental NMR restraints obtained from the previous refinement of the inhibitor-free MMP-1 (1) and recent restraints for the MMP-1:CGS-27023A complex. The hydroxamic acid moiety of CGS-27023A was found to chelate to the "right" of the catalytic zinc where the p-methoxyphenyl sits in the S1' active-site pocket, the isopropyl group is in contact with H83 and N80, and the pyridine ring is solvent exposed. The sulfonyl oxygens are in hydrogen-bonding distance to the backbone NHs of L81 and A82. This is similar to the conformation determined by NMR of the inhibitor bound to stromelysin (2, 3). A total of 48 distance restraints were observed between MMP-1 and CGS-27023A from 3D 13C-edited/12C-filtered NOESY and 3D 15N-edited NOESY experiments. An additional 18 intramolecular restraints were observed for CGS-27023A from a 2D 12C-filtered NOESY experiment. A minimal set of NMR experiments in combination with the free MMP-1 assignments were used to assign the MMP-1 (1)H, 13C, and 15N resonances in the MMP-1:CGS-27023A complex. The assignments of CGS-27023A in the complex were obtained from 2D 12C-filtered NOESY and 2D 12C-filtered TOCSY experiments.  相似文献   

3.
A macrocyclic renin inhibitor was designed using molecular modeling and a model of human renin. The synthesized molecular displayed poor binding affinity. To investigate the reasons for the observed inactivity, the structure of the compound has been studied by NMR spectroscopy and distance geometry. Structural constraints for distance geometry calculations were derived from nuclear Overhauser effects and homonuclear and heteronuclear three bond coupling constants. Homonuclear coupling constants were measured directly from the resolution-enhanced proton spectra and heteronuclear coupling constants were measured from the natural abundance 15N- and 13C-edited TOCSY experiments. One phi angle was determined uniquely by this method and two were reduced to two possible values each. By using a statistical analysis of 400 structures generated with distance geometry, two families of structures were found to be consistent with the NMR data. The solution structures so derived were different from the originally designed structure, including an internal hydrogen bond. This provides a possible explanation for the lack of effectiveness of this compound.  相似文献   

4.
The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe-4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80?Å), with the majority of φ/ψ angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdIIint), for which no X-ray structure is available.  相似文献   

5.
The solution structure and backbone dynamics of Cu(I) pseudoazurin, a 123 amino acid electron transfer protein from Paracoccus pantotrophus, have been determined using NMR methods. The structure was calculated to high precision, with a backbone RMS deviation for secondary structure elements of 0.35+/-0.06 A, using 1,498 distance and 55 torsion angle constraints. The protein has a double-wound Greek-key fold with two alpha-helices toward its C-terminus, similar to that of its oxidized counterpart determined by X-ray crystallography. Comparison of the Cu(I) solution structure with the X-ray structure of the Cu(II) protein shows only small differences in the positions of some of the secondary structure elements. Order parameters S2, measured for amide nitrogens, indicate that the backbone of the protein is rigid on the picosecond to nanosecond timescale.  相似文献   

6.
J H Pease  D E Wemmer 《Biochemistry》1988,27(22):8491-8498
The solution structure of the bee venom neurotoxin apamin has been determined with a distance geometry program using distance constraints derived from NMR. Twenty embedded structures were generated and refined by using the program DSPACE. After error minimization using both conjugate gradient and dynamics algorithms, six structures had very low residual error. Comparisons of these show that the backbone of the peptide is quite well-defined with the largest rms difference between backbone atoms in these structures of 1.34 A. The side chains have far fewer constraints and show greater variability in their positions. The structure derived here is generally consistent with the qualitative model previously described, with most differences occurring in the loop between the beta-turn (residues 2-5) and the C-terminal alpha-helix (residues 9-17). Comparisons are made with previously derived models from NMR data and other methods.  相似文献   

7.
D R Hare  B R Reid 《Biochemistry》1986,25(18):5341-5350
The three-dimensional structure of d(CGCGTTTTCGCG) in solution has been determined from proton NMR data by using distance geometry methods. The rate of dipolar cross-relaxation between protons close together in space is used to calculate distances between proton pairs within 5 A of each other; these distances are used as input to a distance geometry algorithm that embeds this distance matrix in three-dimensional space. The resulting refined structures that best agree with the input distances are all very similar to each other and show that the DNA sequence forms a hairpin in solution; the bases of the loop region are stacked, and the stem region forms a right-handed helix. The advantages and limitations of the technique, as well as the computer requirements of the algorithm, are discussed.  相似文献   

8.
The solution structure of murine epidermal growth factor (mEGF) at pH 3.1 and a temperature of 28 degrees C has been determined from NMR data, using distance geometry calculations and restrained energy minimization. The structure determination is based on 730 conformational constraints derived from NMR data, including 644 NOE-derived upper bound distance constraints, constraints on the ranges of 32 dihedral angles based on measurements of vicinal coupling constants, and 54 upper and lower bound constraints associated with nine hydrogen bonds and the three disulfide bonds. The distance geometry interpretation of the NMR data is based on previously published sequence-specific 1H resonance assignments [Montelione et al. (1988) Biochemistry 27, 2235-2243], supplemented here with individual assignments for some side-chain amide, methylene, and isopropyl methyl protons. The molecular architecture of mEGF is the same as that described previously [Montelione et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5226-5230], but the structure is overall more precisely determined by a more extensive set of NMR constraints. Analysis of proton NMR line widths, amide proton exchange rates, and side-chain 3J(H alpha-H beta) coupling constants provides evidence for internal motion in several regions of the mEGF molecule. Because mEGF is one member of a large family of homologous growth factors and protein domains for which X-ray crystal structures are not yet available, the atomic coordinates resulting from the present structure refinement (which we have deposited in the Brookhaven Protein Data Bank) are important data for understanding the structures of EGF-like proteins and for further detailed comparisons of these structures with mEGF.  相似文献   

9.
The solution structure of the DNA-binding domain (DBD) of the human retinoic acid receptor-beta (hRAR-beta) has been determined by nuclear magnetic resonance (NMR) spectroscopy and distance geometry (DG). The assignments of 1H and 15N resonances were carried out by the use of 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional NMR experiments. The structure of RAR DBD has been obtained on the basis of distance constrains derived from NMR experiments. The structure shows that two "zinc-finger" domains of the protein are followed by two perpendicular alpha-helices and a short beta-sheet near the N-terminus. Apolar residues in both helices form a hydrophobic core. Binding models of RAR DBD to its inverted and direct repeat response elements have been constructed based on this three-dimensional structure.  相似文献   

10.
The structure in solution of crambin, a small protein of 46 residues, has been determined from 2D NMR data using an iterative relaxation matrix approach (IRMA) together with distance geometry, distance bound driven dynamics, molecular dynamics, and energy minimization. A new protocol based on an “ensemble” approach is proposed and compared to the more standard initial rate analysis approach and a “single structure” relaxation matrix approach. The effects of fast local motions are included and R-factor calculations are performed on NOE build-ups to describe the quality of agreement between theory and experiment. A new method for stereospecific assignment of prochiral groups, based on a comparison of theoretical and experimental NOE intensities, has been applied. The solution structure of crambin could be determined with a precision (rmsd from the average structure) of 0.7 Å on backbone atoms and 1.1 Å on all heavy atoms and is largely similar to the crystal structure with a small difference observed in the position of the side chain of Tyr-29 which is determined in solution by both J-coupling and NOE data. Regions of higher structural variability (suggesting higher mobility) are found hi the solution structure, in particular for the loop between the two helices (Gly-20 to Pro-22). © 1993 Wiley-Liss, Inc.  相似文献   

11.
Ribosomal protein S19 is a 10.6 kDa protein in the small subunit of the prokaryotic ribosome. We have determined a high-resolution solution structure of S19 from Thermus thermophilus. Structures were calculated using 1160 distance and dihedral angle restraints derived from (1)H, (15)N and (13)C NMR spectra. The structures show that S19 is a mixed alpha/beta protein with long disordered tails. The folding topology is not homologous to that of any other known protein structure. Potential rRNA and protein binding sites have been identified on the S19 surface.  相似文献   

12.
Gao GH  Liu W  Dai JX  Wang JF  Hu Z  Zhang Y  Wang DC 《Biochemistry》2001,40(37):10973-10978
The three-dimensional solution structure of PAFP-S, an antifungal peptide extracted from the seeds of Phytolacca americana, was determined using 1H NMR spectroscopy. This cationic peptide contains 38 amino acid residues. Its structure was determined from 302 distance restraints and 36 dihedral restraints derived from NOEs and coupling constants. The peptide has six cysteines involved in three disulfide bonds. The previously unassigned parings have now been determined from NMR data. The solution structure of PAFP-S is presented as a set of 20 structures using ab initio dynamic simulated annealing, with an average RMS deviation of 1.68 A for the backbone heavy atoms and 2.19 A for all heavy atoms, respectively. For the well-defined triple-stranded beta-sheet involving residues 8-10, 23-27, and 32-36, the corresponding values were 0.39 and 1.25 A. The global fold involves a cystine-knotted three-stranded antiparallel beta-sheet (residues 8-10, 23-27, 32-36), a flexible loop (residues 14-19), and four beta-reverse turns (residues 4-8, 11-14, 19-22, 28-32). This structure features all the characteristics of the knottin fold. It is the first structural model of an antifungal peptide that adopts a knottin-type structure. PAFP-S has an extended hydrophobic surface comprised of residues Tyr23, Phe25, Ile27, Tyr32, and Val34. The side chains of these residues are well-defined in the NMR structure. Several hydrophilic and positively charged residues (Arg9, Arg38, and Lys36) surround the hydrophobic surface, giving PAFP-S an amphiphilic character which would be the main structural basis of its biological function.  相似文献   

13.
Though challenging, solution NMR spectroscopy allows fundamental interrogation of the structure and dynamics of membrane proteins. One major technical hurdle in studies of helical membrane proteins by NMR is the difficulty of obtaining sufficient long range NOEs to determine tertiary structure. For this reason, long range distance information is sometimes sought through measurement of paramagnetic relaxation enhancements (PRE) of NMR nuclei as a function of distance from an introduced paramagnetic probe. Current PRE interpretation is based on the assumption of Lorentzian resonance lineshapes. However, in order to optimize spectral resolution, modern multidimensional NMR spectra are almost always subjected to resolution-enhancement, leading to distortions in the Lorentizian peak shape. Here it is shown that when PREs are derived using peak intensities (i.e., peak height) and linewidths from both real and simulated spectra that were produced using a wide range of apodization/window functions, that there is little variation in the distances determined (< 1 Å at the extremes). This indicates that the high degree of resolution enhancement required to obtain well-resolved spectra from helical membrane proteins is compatible with the use of PRE data as a source of distance restraints. While these conclusions are particularly important for helical membrane proteins, they are generally applicable to all PRE measurements made using resolution-enhanced data.  相似文献   

14.
15.
The three-dimensional structure of the sea anemone polypeptide Stichodactyla helianthus neurotoxin I in aqueous solution has been determined using distance geometry and restrained molecular dynamics simulations based on NMR data acquired at 500 MHz. A set of 470 nuclear Overhauser enhancement values was measured, of which 216 were used as distance restraints in the structure determination along with 15 dihedral angles derived from coupling constants. After restrained molecular dynamics refinement, the eight structures that best fit the input data form a closely related family. They describe a structure that consists of a core of twisted, four-stranded, antiparallel beta-sheet encompassing residues 1-3, 19-24, 29-34, and 40-47, joined by three loops, two of which are well defined by the NMR data. The third loop, encompassing residues 7-16, is poorly defined by the data and is assumed to undergo conformational averaging in solution. Pairwise root mean square displacement values for the backbone heavy atoms of the eight best structures are 1.3 +/- 0.2A when the poorly defined loop is excluded and 3.6 +/- 1.0A for all backbone atoms. Refinement using restrained molecular dynamics improved the quality of the structures generated by distance geometry calculations with respect to the number of nuclear Overhauser enhancements violated, the size of the total distance violations and the total potential energies of the structures. The family of structures for S. heliathus neurotoxin I is compared with structures of related sea anemone proteins that also bind to the voltage-gated sodium channel.  相似文献   

16.
The conformation of cyclolinopeptide A, c(Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val), a naturally occurring peptide with remarkable cytoprotective activity, has been investigated by means of distance geometry calculations and molecular dynamics simulations. The starting points for all the calculations were an X-ray structure and other structures obtained from distance geometry calculations based on NMR data. Restrained and unrestrained molecular dynamics simulations are reported in vacuo and in CCl4. Structural and dynamic properties are investigated and compared with those experimentally determined. The conformation obtained from the MD simulations which best reproduces the NMR parameters is at the same time one of the most stable ones and is also fairly similar to the crystal structure. An explanation for the occurrence of multiple conformations in solution at room temperature is given.  相似文献   

17.
A set of high-resolution three-dimensional solution structures of the Src homology region-2 (SH2) domain of the growth factor receptor-bound protein-2 was determined using heteronuclear NMR spectroscopy. The NMR data used in this study were collected on a stable monomeric protein solution that was free of protein aggregates and proteolysis. The solution structure was determined based upon a total of 1439 constraints, which included 1326 nuclear Overhauser effect distance constraints, 70 hydrogen bond constraints, and 43 dihedral angle constraints. Distance geometry-simulated annealing calculations followed by energy minimization yielded a family of 18 structures that converged to a root-mean-square deviation of 1.09 Å for all backbone atoms and 0.40 Å for the backbone atoms of the central -sheet. The core structure of the SH2 domain contains an antiparallel -sheet flanked by two parallel -helices displaying an overall architecture that is similar to other known SH2 domain structures. This family of NMR structures is compared to the X-ray structure and to another family of NMR solution structures determined under different solution conditions.  相似文献   

18.
The solution conformation of a synthetic snake venom toxin waglerin I, has been determined by using proton nuclear magnetic resonance spectroscopy. By y a combination of various two-dimensional NMR techniques, the 1H-NMR spectrum of waglerin I was completely assigned. A set of 247 interproton distance restraints was derived from nuclear Overhauser enhancement (NOE) measurements. These NOE constraints, in addition to the 2 dihedral angle restraints (from coupling constant measurements) and 7 ω torsion angle restraints for prolines, formed the basis of three-dimensional structure determined by molecular dynamics techniques. The 19 structures that were obtained satisfy the experimental restraints, and display small deviation from idealized covalent geometry. Analysis of converged structures indicates that the toxin has no special secondary structure. In the solution structure of waglerin I, the central ring region is well defined but the N- and C-termini possesses more disorder.  相似文献   

19.
The solution structure of human transforming growth factor alpha   总被引:6,自引:0,他引:6  
The solution structure of transforming growth factor alpha has been determined by a combination of high-resolution 1H-nuclear magnetic resonance and distance geometry and restrained molecular dynamics. The 382 restraints derived from the NMR experiments were used to calculate many distance geometry structures, which were then refined by restrained molecular mechanics. Five of these structures were further refined using a variety of methods. Comparison of independently measured parameters, such as calculated hydrogen bonding patterns and experimental amide exchange rates, have been used to evaluate the accuracy of the structures. Also, possible mechanisms to explain the pH-dependent conformational interconversion observed are suggested. Finally comparisons between this work and others on this topic have been made.  相似文献   

20.
The structure of the chicken smooth muscle myosin light chain kinase pseudosubstrate sequence MLCK(774–807)amide was studied using two-dimensional proton NMR spectroscopy. Resonance assignments were made with the aid of totally correlated and nuclear Overhauser effect spectroscopy. A distance geometry algorithm was used to process the body of NMR distance and angle data and the resulting family of structures was further refined using dynamic simulated annealing. The major structural features determined include two helical segments extending from Asp-777 to Lys-785 and from Arg-790/Met-791 to Trp-800 connected by a turn region from Leu-786 to Asp-789 enabling the helices to interact in solution. The C-terminal helix incorporates the bulk of the pseudosubstrate recognition site which is partially overlapped by the calmodulin binding site while the N-terminal helix forms the bulk of the connecting peptide. The demonstrated turn between the helices may assist in enabling the autoregulatory or pseudosubstrate recognition sequence to be rotated out of the active site of the catalytic core following calmodulin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号