首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Capillary electrophoresis revealed that the endogenous level of ACC (1-aminocyclopropane-1-carboxylic acid) in the gametophytes of Anemia phyllitidis was elevated during GA3-induced male determination, whereas AOA (aminooxyacetic acid, specific inhibitor of ACC synthase) in untreated as well as in the GA3-treated gametophytes decreased concentration of ACC. The mechanism of ethylene involvement in controlling antheridiogenesis reflected at the level of ACC, which is supposed to mediate interactions between ethylene and gibberellins, is proposed.  相似文献   

2.
In fern (Anemia phyllitidis) gametophytes cellulose in the walls of the antheridial zone cells which was organized in clusters and spots was transformed via dispersed form to fibrillar arrangement (layered in oblique and perpendicular array in relation to the transverse direction of cell expansion) during antheridiogenesis induced by gibberellic acid (GA3) and/or enhanced by 1-aminocyclopropane-1-carboxylic acid (ACC). In the ACC-treated gametophytes, where antheridia were not induced, the cellulose was arranged in the same manner. Aminooxyacetic acid (AOA), which inhibits antheridiogenesis and development of fern gametophytes, produced in the cell walls both random and longitudinal type of organization of cellulose microfibrils, however, in the GA3/AOA-treated plants the oblique type was also observed. The total numbers of cells with perpendicular and/or oblique type of cellulose microfibrils in the GA3-, GA3/ACC-and GA3/AOA-treated gametophytes corresponded to the average number of antheridia formed. Moreover, it was found that the extracts from the gametophytes treated with GA3 or with the mixture of GA3 and ACC contained significantly less soluble sugars but more α-amylase-and endoglucanase-released sugars than the extracts from the gametophytes of the other series. Thin layer chromatography of the samples from the cell wall extracts hydrolyzed by endoglucanase contained xylose and cellobiose which suggested that these sugars built the xyloglucans, hemicellulose polymers responsible for tethering of walls of fern gametophyte cells like in higher plants.  相似文献   

3.
Cytomorphological studies of the development of young fern gametophytes (Anemia phyllitidis) have been used to investigate combined effects of gibberellic acid and ethylene on male sex expression. ACC (the key by-product in ethylene biosynthesis pathway) was found to exert a synergetic effect on the gibberellic acid-induced antheridia formation, and this phenomenon could be related with the specific stimulation of cell growth and activity of their differentiation. To complete and verify those observations male sex expression in the fern gametophytes treated with ACC-biosynthesis inhibitor was reinvestigated. Aminooxyacetic acid (AOA) restrained antheridia formation via inhibition of cell divisions. AOA influenced the arrangement and flexibility of cellulose microfibrils in the antheridial zone cells, thus affecting cell expansion. On the other hand, the level of DNA synthesis was not reduced. Transient increase in the number of S-phase cells, followed by the accumulation of G2-phase cells led to the enhancement of cell polyploidization. All these findings correspond with the previous observations and support participation of ethylene in gibberellic acid-induced male sex expression in ferns.Abbreviations AOA Aminooxyacetic acid - CPA Cell profile area - GA Gibberellin - GA3 Gibberellic acid  相似文献   

4.
One of the prime precursor for ethylene synthesis — L-methionine and the inhibitor of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) — Co2+-were tested for their effects on sex expression and development of Anemia phyllitidis fern gametophytes. Five concentrations of both chemicals (0, 10, 25, 50, 100 μM) were analysed with reference to antheridia and archegonia formation, number and size of cells as well as thalli length using the three-zone model of gametophyte structure. Both substances, however at different concentrations, enhanced the number of GA3-induced antheridia and similarly stimulated the cell number and inhibited thalli length. Both of them at 100 μM concentrations without GA3 induced meristematic area formation while methionine also induced archegonia in the apical parts of gametophytes. These findings correspond with the previous observations concerning the important role of ethylene synthesis precursor (ACC) in controlling gibberellic acid-induced male sex expression in ferns and broaden the knowledge about the mechanisms of fern gametophyte development.  相似文献   

5.
Methyl jasmonate (JA-Me) inhibited or retarded germination of Amaranthus caudatus seeds in darkness at 24°C, Ethephon, ACC and gibberellins (GA3 or GA4+7) partially or completely reversed this inhibition depending on the concentration of JA-Me applied. Both ethephon and the gibberellins were more effective than ACC. Both GA3 and GA4+7 enhanced the stimulatory effect of ethephon or ACC on germination of seeds inhibited by JA-Me.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - JA jasmonic acid - JA-Me methyl jasmonate  相似文献   

6.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

7.
The effect of gibberellin A1 (GA1) on production of ethylene by cowpea (Vigna sinensis cv Blackeye pea no. 5) epicotyl explants and its relationship to epicotyl elongation was investigated. The explants were placed upright in water and incubated in sealed culture tubes or in large jars. GA, and IAA in ethanol solution were injected into the subapical tissues of the decapitated epicotyls. Cowpea epicotyl explants elongated after GA but not after IAA treatment, and they were very sensitive to exogenous ethylene. As little as 0.14 1/1 ethylene reduced significantly GA1-induced epicotyl elongation.Treatment with GA1 induced the production of ethylene which began 10 h after GA application, showed a peak at about 22 h and then declined. The yield of ethylene was proportional to the amount of GA, injected. The inhibition of epicotyl elongation in closed tubes was avoided by absorbing ethylene released with Hg(Cl04)2 , or by adding AVG to the incubation solution to inhibit ethylene production. Treatment with IAA elicited a rapid production of ethylene which ceased about 10 h after application. The effects of IAA and GA1 on ethylene production were additive.Abbreviations AVG aminoethoxyvinylglycine 2-amino-4-(2-aminoethoxy)-trans-3butenoic acid - ACC 1-aminocyclopropane-1-carboxylic acid - GA gibberellin - IAA indole-3-acetic acid  相似文献   

8.
In Schizaeaceae ferns, including Anemia phyllitidis, formation of antheridia is known to be induced by exogenously applied gibberellic acid. Also present studies show that GA3 (10−5 mol·dm−3) modifies the development of gametophytes of Anemia phyllitidis. Simultaneously with formation of antheridia, they exhibit lower number of cells but only slightly lowered profile areas and lengths of prothalli. Growth in size of individual cells compensates for lowered division frequency. Cytophotometric measurements reveal no essential changes in the DNA content in vegetative cells of the control and GA3-stimulated gametophytes. It remains at haploid level and therefore it is assumed that cell cycle is blocked at G1 phase. Application of GA3 increases the total amount of proteins. CZE (Capillary Zone Electrophoresis) separation of peptides extracted from control and GA3-treated prothalli indicates the differences in the ratio of their particular forms. In GA3-treated gametophytes the activities of acid and basic phosphatases, contents of carbohydrates (glucose, starch), chlorophyll, the number of chloroplasts and dry mass of prothalli are increased. GA3-intensified metabolism, evidenced in gametophytes of A. phyllitidis, may be interpreted as a stimulatory mechanism which influences metabolic pathways involved in forming, developing and maturing of male sex organs.  相似文献   

9.
Yu Liu  Ling-yuan Su  Shang Fa Yang 《Planta》1984,161(5):439-443
1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When -amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). -Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -aminoisobutyric acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid - MAIB -(malonylamino)-isobutyric acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

10.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

11.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

12.
In Anemia phyllitidis gametophytes two of the ethylene perception inhibitors (silver ions, Ag+; 2,5-norbornadiene, NBD) caused opposite effects on GA3-induced antheridia formation and on the increment of ACC (1-aminocyclopropane-1-carboxylic acid) content accompanying this process. Ag+ enhanced while NBD inhibited GA3-induced antheridiogenesis and each inhibitor modulated the level of ACC in a different manner. Cobalt ions (Co2+) and aminooxyacetic acid (AOA; the ethylene synthesis inhibitors), also modulated the level of GA3-induced ACC content differently. These results strongly confirm the earlier suggestion that ethylene plays a role of the second messenger in GA3-induced antheridiogenesis during “induction” and “expression” phases, and the 3rd h of the former phase is the time when elevation of ACC content induced while in the 6th h inhibited antheridiogenesis. Timing of changes in ACC content and morphogenetic effects of GA3-induced antheridiogenesis in A. phyllitidis gametophytes allowed to indicate that AOA together with NBD could participate in one while Co2+ and Ag+ in another ethylene synthesis and signaling pathway.  相似文献   

13.
The germination of Amaranthus paniculatus seeds was inhibited by applying paclobutrazol, a specific inhibitor of gibberellin biosynthesis. This inhibition was markedly counteracted by gibberellin A3 (GA3), suggesting that endogenous gibberellins are required for germination in this species. The inhibitory effect of paclobutrazol was also overcome by ethephon (2-chloroethylphosphonic acid) or the precursor of ethylene biosynthesis, ACC (1-aminocyclopropane-l-carboxylic acid). Thus the physiological effect of gibberellin can be mimicked by ethylene released from ethephon or synthesised from exogenous ACC. It is suggested, that endogenous gibberellins are involved in germination of Amaranthus paniculatus seeds and that action of GA3 can be substituted by ethylene.Abbreviations ACC 1-aminocyclopropane-l-carboxylic acid - AMO-1618 (2-isopropyl-5methyl-4-trimethylammoniumchloride)-phenyl-l-piperidinium-carboxylate - ancymidol -cyclopropyl--(4-methoxyphenyl)-5-pyrimidine methanol - chloromequat chloride (2-chloroethyl)trimethylammoniumchloride - ethephon 2-chloroethylphosphonic acid - GA gibberellin A3 - paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - Phosphon D 2,4,dichlorobenzyl-tributhylphosphoniumchloride - tetcyclacis 5,(4-chlorophenyl)-3,4,5,9,10-pentaaza-tetracyclo)5,4,1,0,Z,6,08,11 dodeca-3,9-diene  相似文献   

14.
Dormant Amaranthus retroflexus seeds do not germinate in the dark at temperatures below 35°C. Fully dormant seeds germinate only at 35–40°C whereas non-dormant ones germinate within a wider range of temperatures (15 to 40°C). Germination of non-dormant seeds requires at least 10% oxygen, but the sensitivity of seeds to oxygen deprivation increases with increasing depth of dormancy. 10–6 to 10–4 M ethephon, 10–3 M 1-aminocyclopropane 1-carboxylic acid (ACC) and 10–3 M gibberellic acid (GA3) break this dormancy. In the presence of 10–3 M GA3 dormant seeds are able to germinate in the same range of temperatures as non-dormant seeds. The stimulatory effect of GA3 is less dependent on temperature than that of ethephon, while ACC stimulates germination only at relatively high temperatures (25–30°C). The results obtained are discussed in relation to the possible involvement of endogenous ethylene in the regulation of germination of A. retroflexus seeds.Abbreviations ACC 1-aminocyclopropane 1-carboxylic acid - GA3 gibberellic acid - SD standard deviation  相似文献   

15.
The contents of artemisinin and artemisinic acid were monitored in the Artemisia annua plants treated with GA3 at vegetative and flowering initiation stages. The highest artemisinin content was observed at full bloom. The decrease in artemisinic acid content occurred during the transition from the vegetative stage to the beginning of flowering. Endogenous GA3 content in the leaves peaked at full bloom. At the vegetative stage, in plants treated with various concentrations of GA3 , the content of artemisinin increased while that of artemisinic acid decreased. Apparently, the rate-limiting step in artemisinin biosynthesis was from artemisinic acid to artemisinin. The bottleneck of artemisinin biosynthesis was probably unlocked during the flowering or in the vegetative plants treated with GA3 , which triggered off the conversion of artemisinic acid to artemisinin.From Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 68–73.Original English Text Copyright © 2005 by Zhang, Ye, Liu, Wang, Li.This article was presented by the authors in English.  相似文献   

16.
Fei H  Zhang R  Pharis RP  Sawhney VK 《Planta》2004,219(4):649-660
Earlier, we reported that mutation in the Male Sterile33 (MS33) locus in Arabidopsis thaliana causes inhibition of stamen filament growth and a defect in the maturation of pollen grains [Fei and Sawhney (1999) Physiol Plant 105:165–170; Fei and Sawhney (2001) Can J Bot 79:118–129]. Here we report that the ms33 mutant has other pleiotropic effects, including aberrant growth of all floral organs and a delay in seed germination and in flowering time. These defects could be partially or completely restored by low temperature or by exogenous gibberellin A4 (GA4), which in all cases was more effective than GA3 Analysis of endogenous GAs showed that in wild type (WT) mature flowers GA4 was the major GA, and that relative to WT the ms33 flowers had low levels of the growth active GAs, GA1 and GA4, and very reduced levels of GA9, GA24 and GA15, precursors of GA4. This suggests that mutation in the MS33 gene may suppress the GA biosynthetic pathway that leads to GA4 via GA9 and the early 13-H C20 GAs. WT flowers also possessed a much higher level of indole-3-acetic acid (IAA), and a lower level of abscisic acid (ABA), relative to ms33 flowers. Low temperature induced partial restoration of male fertility in the ms33 flowers and this was associated with partial increase in GA4. In contrast, in WT flowers GA1 and GA4 were very much reduced by low temperature. Low temperature also had little effect on IAA or ABA levels of ms33 flowers, but did reduce (>2-fold) IAA levels in WT flowers. The double mutants, ms33 aba1-1 (an ABA-deficient mutant), and ms33 spy-3 (a GA signal transduction mutant) had flower phenotypes similar to ms33. Together, the data suggest that the developmental defects in the ms33 mutant are unrelated to ABA levels, but may be causally associated with reduced levels of IAA, GA1 and GA4, compared to WT flowers.Abbreviations ABA Abscisic acid - GA Gibberellin - GC-MS-SIM Gas chromatography-mass spectrometry-selected ion monitoring - IAA Indole-3-acetic acid - ms33 Male sterile33 mutant - PP333 Paclobutrazol - WT Wild type  相似文献   

17.
Ethephon (Eth), gibberellin A3, A4 + 7 (GA3, GA4 + 7), and 6-benzyladenine (BA) removed secondary dormancy of Amaranthus caudatus seeds. The GAs and BA potentiated the effect of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene biosynthesis precursor, in terms of the rate or final percent of germination. Aminoethoxyvinylglycine (AVG), an ACC synthase activity inhibitor, was observed to simultaneously inhibit the release from dormancy effected by GA3 or BA as well as the ethylene production stimulated by these regulators. Breaking of secondary dormancy by GA3, GA4 + 7 or BA was prevented by 2,5-norbornadiene (NBD), an inhibitor of ethylene binding. Ethylene completely or markedly reversed the inhibitory effect of NBD. We thus conclude that the removal of secondary dormancy in Amaranthus caudatus seeds by gibberellin or benzyladenine involves ethylene biosynthesis and action.  相似文献   

18.
We have studied the mechanism of auxin autonomy in tobacco (Nicotiana tabacum L.) crowngall tissues transformed by the auxin-mutant (tms ) A66 strain of Agrobacterium tumefaciens. Normally, tms tobacco tumor tissues require the formation of shoots to exhibit auxin-independent growth in culture. We have isolated from tms tobacco cells several stable variants that are fully hormone-independent and grow rapidly as friable, unorganized tissues, thus mimicking the growth and morphology of tms + tobacco cells that produce high levels of auxin. However, none of the variants contained the high levels of auxin found in tms + tumor cells. The variants could be divided into two classes with respect to their response to applied auxin. The first class was highly sensitive to applied auxin: low concentrations (1 M) of -naphthaleneacetic acid (NAA) severely inhibited growth and markedly stimulated the accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). The second class of variants showed a low sensitivity to applied auxin: growth was promoted by concentrations of NAA up to 10 M, and growth inhibition and high ACC levels were observed only at high NAA concentrations (100 M). Unorganized variants with low auxin sensitivity were also isolated from a variant line with high auxin sensitivity. The isolation of tumor cells that exhibited the growth phenotype of tms + cells while retaining the low auxin content and low auxin sensitivity of tms cells indicates that full hormone autonomy, characteristic of wild-type crown-gall tumors, can be achieved by a mechanism that is independent of changes in the auxin physiology of the cells.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - MACC N-malonyl ACC - NAA naphthaleneacetic acid - tms tumor morphology shooty, the auxin biosynthesis locus of Agrobacterium Ti plasmids The authors thank Dr. Andrew Binns (University of Pennsylvania, Philadelphia, USA) for providing cell lines TA6-5 and TA66C3-78, and Mr. James Dacey for preparation of the composite photograph used in Fig. 1. Support for this work by the National Science Foundation (DMB84-17087) and the U.S. Department of Agriculture (86-CRCR-1-2150) is gratefully acknowledged.  相似文献   

19.
20.
Masami Ogawa  Hiroko Kitamura 《Planta》1980,147(5):495-499
4-Ethoxy-1-(p-tolyl)-s-triazine-2,6(1H,3H)-dione (TA) promoted mesocotyl growth in dark-grown rice (Oryza sativa L.) seedlings. In cultivars of the japonica type TA alone showed a small promotive effect and TA+gibberellic acid(GA3) had a marked synergistic effect, while in other cultivars, mostly of the indica type, TA alone showed a great promotive effect and TA+GA3 had only an additive effect. In cv. Nato, a typical representative of cultivars showing the second type of response, the concentration of TA giving the greatest growth promotion was around 0.1–0.2 mM. In Nato seedlings treated with TA at 0.1 mM, the mesocotyls continued to elongate for 6 days and reached about 75 mm in length, while the mesocotyls of control seedlings grew to a maximum of about 10 mm and growth was limited to the first 3 days after planting. The TA-induced mesocotyl elongation was mainly the consequence of increased cell multiplication in the meristematic area immediately below the coleoptilar node. GA3, abscisic acid (ABA) and ethylene also stimulated mesocotyl growth in dark-grown Nato seedlings but their effects were much smaller than those of TA. ABA, like GA3, had an additive effect with TA, but ethylene suppressed the effect of TA and resulted in increased lateral expansion in the upper region of the mesocotyls of TA-treated seedlings.Abbreviations ABA abscisic acid - GA(s) gibberellin(s) - GA3 gibberellic acid - TA 4-ethoxy-1-(p-tolyl)-s-triazine-2,6(1H,3H)-dione Part 5 in the series Plant Growth-regulating Activities of Isourea Derivatives and Related Compounds; Part 4=Ogawa et al. (1978)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号