共查询到20条相似文献,搜索用时 0 毫秒
1.
D.-Ch. Neugebauer 《Cell and tissue research》1986,246(2):447-453
Summary The maculae utriculi and sacculi of the inner ear from the European roach (Rutilus rutilus) were investigated by transmission electron microscopy. The stereovilli of peripherally and centrally located sensory cells differ in several features that suggest a developmental gradient. The stereovilli of the peripheral sensory cells, shown to be differentiating cells by other research groups, are short and less steeply graded in height than in central hair cells. All stereovilli in both kinds of hair bundles are interconnected. In the central bundles of stereovilli basal, tip, and vertical connectors are separated by unconnected regions. In contrast, filaments and sometimes other additional structures connect the stereovilli of peripheral bundles over their entire length, but vertical connectors are usually absent. Osmiophilic material occurring inside peripheral stereovilli is interpreted to be monomeric actin. Central and peripheral hair bundles also differ in their reaction to ruthenium red and cationized ferritin. Only the stereovilli of the central cells can be fused by these polycations. Ruthenium red also discriminates between supporting and sensory cells indicating differences in amount or distribution of extracellular material. Hair bundles, intermediate in properties and position between central and peripheral sensory cells, were also found, so that it became possible to propose a scheme of developmental steps leading from microvilli or microvillus-like stereovilli to the fully differentiated hair bundle. 相似文献
2.
Summary Serial sections of the vestibular ampullae of two species of fish and one species of frog were investigated by electron microscopy. The kinocilium is the only connection between the sensory cells and the auxiliary structure (cupula). The cupula possesses canals that traverse its entire height. Each canal contains a single kinocilium in its proximal part; distally, it is filled with material that stains with colloidal silver. The matrix of the cupula consists of filaments running perpendicular to the canals. These filaments do not stain with colloidal silver. The kinocilium is connected to the wall of the canal via structures that differ in the studied species of fish and frog. The filamentous links between the kinocilium and the longest stereovilli of the sensory hair bundle are similar in all the investigated species. The stereovilli are interconnected by basal and shaft links, and by horizontal and oblique tip connectors, similar to those described by other authors for macula organs and the organ of Corti, although differences in structural details, especially of the horizontal tip and the shaft connectors, are present. Some of these are species specific and some are related to the position of the sensory cell in the epithelium and/or specific to the organ (ampulla or macula organ). Some attachment sites of the links are associated with osmiophilic submembranous material. These differences in the structure, distribution and attachment sites of the links are possibly of functional importance. 相似文献
3.
Matthias Kirsch Mustafa B. A. Djamgoz Hans-Joachim Wagner 《Cell and tissue research》1990,260(1):123-130
Summary A negative feedback interaction between luminosity type horizonatal cells (HCs) and green-sensitive cones generates the long-wavelength-sensitive depolarizing response in biphasic chromaticity type HCs. This interaction is suppressed in the dark and is potentiated by light adaptation of the retina. HCs are morphologically plastic; during light adaptation, their dendritic terminals within cone pedicles extend, giving rise to spinules. This paper examines whether there is a quantitative correlation between the time course of light-dependent formation of the spinules and enhancement of the feedback interaction. The strength of the feedback interaction in isolated retinac of the roach was determined as the neutral wavelength at which reversal of spectral response polarity occurred in biphasic HCs. A good correlation was found between the neutral wavelength and the spinule/ribbon ratios of retinae. Biphasic HCs were intracellularly stained with horseradish peroxidase and the correlative ultrastructure of the contacted pedicles was examined. Neutral wavelength was found to be correlated with the spinule number, weighted according to the number of synaptic contacts mediating feed-forward transmission. The latter was estimated from the total number of labelled Cb/H2 HC processes (central and lateral) at synaptic triads. A model in which spinules mediate the negative feedback interaction of HCs in the retina of cyprinid fish is presented. 相似文献
4.
Seiler C Ben-David O Sidi S Hendrich O Rusch A Burnside B Avraham KB Nicolson T 《Developmental biology》2004,272(2):328-338
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear. To investigate the function of myosin VI in zebrafish, we cloned and examined the expression pattern of myosin VI, which is duplicated in the zebrafish genome. One duplicate, myo6a, is expressed in a ubiquitous pattern during early development and at later stages, and is highly expressed in the brain, gut, and kidney. myo6b, on the other hand, is predominantly expressed in the sensory epithelium of the ear and lateral line at all developmental stages examined. Both molecules have different splice variants expressed in these tissues. Using a candidate gene approach, we show that myo6b is satellite, a gene responsible for auditory/vestibular defects in zebrafish larvae. Examination of hair cells in satellite mutants revealed that stereociliary bundles are irregular and disorganized. At the ultrastructural level, we observed that the apical surface of satellite mutant hair cells abnormally protrudes above the epithelium and the membrane near the base of the stereocilia is raised. At later stages, stereocilia fused together. We conclude that zebrafish myo6b is required for maintaining the integrity of the apical surface of hair cells, suggesting a conserved role for myosin VI in regulation of actin-based interactions with the plasma membrane. 相似文献
5.
New hair cells are added during postembryonic life in several species of fishes and birds. The production of new hair cells appears to require enlargement of eighth nerve arbors during growth since, at least in fish, eighth nerve neurons are added more slowly than hair cells or not at all. This situation provides an intriguing opportunity to study the mechanisms of growth of the neuronal arbors. In this paper, we report the results of studies on the postembryonic growth of eighth nerve dendritic arbors in the saccular epithelium of the cichlid fish Astronotus ocellatus. Arbor sizes and shapes were compared in small and large fish using the axonal tracer cobaltouslysine. Our data suggest that postembryonic eighth nerve arbors enlarge in 2 ways. First, arbors add new terminal endings to their distal ends. Second, whole new branches appear to be added at locations up to hundreds of micrometers proximal to the terminal endings. These 2 modes of growth suggest that more than one mechanism may be operative in controlling arbor enlargement. 相似文献
6.
Summary Forty amacrine cells in retinae of a cyprinid fish, the roach, were intracellularly labelled with horseradish peroxidase following electrophysiological identification as sustained depolarizing, sustained hyperpolarizing or transient units. Labelled cells were analysed by light microscopy and compared with a catalogue of amacrine cells established in a previous Golgi study on the same species. About 30% of the cell types characterized by the Golgi method were encountered in the present study. When intracellularly labelled cells were differentiated on the basis of their dendritic organization in the plane of the retina, a given electrophysiological response pattern was found to be generated by different morphological types, and vice versa. However, examination of the ramification patterns of the dendrites within the inner plexiform layer (i.e. in the radial dimension of the retina), showed that this morphological parameter of a given amacrine cell could be correlated with its light-evoked response. Several amacrine cell types were found to possess special distal dendrites which arose from the main dendritic branches and extended well over a mm in the retina. Distal dendrites were oriented tangentially with respect to the optic nerve papilla, but did not appear to be involved in any synaptic connectivity. It is concluded that the Golgi-based classification is a valuable tool for identifying intracellularly labelled amacrine cells. However, although the correlation between layering of dendrites in the inner plexiform layer and electrophysiology was generally good, additional physiological parameters would be required to determine whether more extensive parallels exist between structural and functional characteristics of amacrine cells. Alternatively, the considerable morphological diversity of amacrine cells may be of limited physiological significance.A preliminary account of the present findings was presented to the Physiological Society (Djamgoz et al. 1984) 相似文献
7.
8.
Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development 总被引:5,自引:0,他引:5
Lagziel A Ahmed ZM Schultz JM Morell RJ Belyantseva IA Friedman TB 《Developmental biology》2005,280(2):295-306
Mutant alleles of the gene encoding cadherin 23 are associated with Usher syndrome type 1 (USH1D), isolated deafness (DFNB12) in humans, and deafness and circling behavior in waltzer (v) mice. Stereocilia of waltzer mice are disorganized and the kinocilia misplaced, indicating the importance of cadherin 23 for hair bundle development. Cadherin 23 was localized to developing stereocilia and proposed as a component of the tip link. We show that, during development of the inner ear, cadherin 23 is initially detected in centrosomes at E14.5, then along the length of emerging stereocilia, and later becomes concentrated at and subsequently disappears from the tops of stereocilia. In mature vestibular hair bundles, cadherin 23 is present along the kinocilium and in the region of stereocilia-kinocilium bonds, a pattern conserved in mammals, chicks, and frogs. Cadherin 23 is also present in Reissner's membrane (RM) throughout development. In homozygous v(6J) mice, a reported null allele, cadherin 23 was absent from stereocilia, but present in kinocilia, RM, and centrosomes. We reconciled these results by identifying two novel isoforms of Cdh23 unaffected in sequence and expression by the v(6J) allele. Our results suggest that Cdh23 participation in stereocilia links may be restricted to developing hair bundles. 相似文献
9.
We applied a micro-cDNA-based subtraction method to identify genes expressed in the regenerating sensory epithelia (SE) of the chicken inner ear. Sensory hair cells in the avian utricle SE are in a constant state of turnover, where dying hair cells are replaced by new ones derived from supporting cells. In contrast, hair cells in the cochlea remain quiescent unless damaged. We used this difference to enrich for utricle-specific genes, using reiterative cDNA subtraction and demonstrate enrichment for utricle-specific sequences. A total of 1710 cDNA sequence reads revealed the presence of many cDNAs encoding known structural components of the SE (for example, Harmonin and beta-tectorin), proteins involved in cellular proliferation, such as P311, HIPK2, and SPALT1, among many others of unknown function. These libraries are the first of their kind and should prove useful for the discovery of candidate genes for hearing disorders, regenerative and apoptotic pathways, and novel chicken ESTs. 相似文献
10.
Tsonis PA Call MK Grogg MW Sartor MA Taylor RR Forge A Fyffe R Goldenberg R Cowper-Sal-lari R Tomlinson CR 《Biochemical and biophysical research communications》2007,362(4):940-945
MicroRNAs are known to regulate the expression of many mRNAs by binding to complementary target sequences at the 3'UTRs. Because of such properties, miRNAs may regulate tissue-specific mRNAs as a cell undergoes transdifferentiation during regeneration. We have tested this hypothesis during lens and hair cell regeneration in newts using microarray analysis. We found that distinct sets of miRNAs are associated with lens and hair cell regeneration. Members of the let-7 family are expressed in both events and they are regulated in a similar fashion. All the let-7 members are down regulated during the initiation of regeneration, which is characterized by dedifferentiation of terminally differentiated cells. This is the first report to correlate expression of miRNAs as novel regulators of vertebrate regeneration, alluding to a novel mechanism whereby transdifferentiation occurs. 相似文献
11.
The development of the frontal bone and the formation of the first head scales are described during post-embryonic ontogeny of Hemichromis bimaculatus, using light and transmission electron microscopy. The frontal bone originates close to the cartilaginous taenia marginalis in a loose mesenchymal cell condensation (=primordium) lying 1 m from the epidermis with which it establishes no cell contacts. The anlage appears at 4.2 mm standard length (SL) in the form of the membranodermal component of the bone, and extends first over the brain and then over the eye; the neurodermal component forms later to surround the supraorbital canal. The first head scales appear at 10.0 mm SL in a dense cell condensation (papilla) adjoining the epidermal-dermal junction and, once formed, remain in this position. In both organs, the initial matrix is similarly composed of woven-fibred bone that soon mineralizes in a similar manner to other dermal elements. In some areas of the frontal bone, parallel-fibred bone is deposited unequally on both surfaces, whereas isopedine is deposited in scales on the deep surface only. Osteoblastic features confirm this eccentric growth. Differences in the shape, organization and localization of the mesenchymal condensations giving rise to the frontal bone and to the scale reflect the existence of two types of dermal cell condensations. Our data are compared with those available for the post-cranial dermal skeleton of fishes both from a developmental and structural viewpoint. Structural differences in the matrices of the frontal bone and scales are discussed in a phylogenetic perspective. 相似文献
12.
The early innate immune response of the teleost gilthead seabream (Sparus aurata L.) against xenogeneic cells was studied. Fish received a single intraperitoneal injection of xenogeneic cells (tumour cell line), following which leucocyte mobilization, degranulation, peroxidase content, respiratory burst and phagocytic and cytotoxic activities were determined in both peritoneal exudate leucocytes (PELs) and head-kidney leucocytes (HKLs). The total number of PELs increased from 4 h post-injection until the end of the experiment (3 days). Interestingly, flow cytometric analysis of PEL and HKL suspensions revealed variations in the proportion of cell types. The percentage of HK acidophilic granulocytes significantly increased after 72 h, whereas PE acidophils increased after 4 h. Moreover, numbers of PE lymphocytes and monocyte-macrophages significantly increased during the experiment. The peroxidase content of the leucocytes was unaffected, although PEL degranulation was largely enhanced. This liberation of peroxidases correlated well with the enhancement of the oxidative respiratory burst activity in PELs, reflecting leucocyte activation. However, phagocytosis only increased in PELs 4 h after intraperitoneal injection, whereas the cytotoxic activity of HKLs increased 1 and 2 days post-injection but, in general, decreased in the PELs. Our data thus demonstrate that the appearance of xenogeneic cells involves leucocyte mobilization and innate immune-response activation at the site of invasion and in the head-kidney. Involvement of the various leucocyte types and potential modes of activation are discussed.This work was partially funded by the European Commission (QLRT-2001-00722). A. Cuesta and I. Salinas are fellows of Fundación CajaMurcia and Fundación Séneca, respectively. 相似文献
13.
Developmental models for skin exist in terrestrial and amphibious vertebrates but there is a lack of information in aquatic
vertebrates. We have analysed skin epidermal development of a bony fish (teleost), the most successful group of extant vertebrates.
A specific epidermal type I keratin cDNA (hhKer1), which may be a bony-fish-specific adaptation associated with the divergence of skin development (scale formation) compared
with other vertebrates, has been cloned and characterized. The expression of hhKer1 and collagen 1α1 in skin taken together with the presence or absence of keratin bundle-like structures have made it possible to distinguish
between larval and adult epidermal cells during skin development. The use of a flatfish with a well-defined larval to juvenile
transition as a model of skin development has revealed that epidermal larval basal cells differentiate directly to epidermal
adult basal cells at the climax of metamorphosis. Moreover, hhKer1 expression is downregulated at the climax of metamorphosis and is inversely correlated with increasing thyroxin levels. We
suggest that, whereas early mechanisms of skin development between aquatic and terrestrial vertebrates are conserved, later
mechanisms diverge.
This work was carried out within the project “Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis”
(Q5RS-2002-01192) with financial support from the Commission of the European Communities. It does not necessarily reflect
the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by Pluriannual
funding to CCMAR by the Portuguese Science and Technology Council. M.A. Campinho was sponsored by the Portuguese Ministry
of Science (grant no. SFRH/BD/6133/2001). 相似文献
14.
Summary Testes of Esox lucius and Esox niger were investigated histologically, cytochemically, and ultrastructurally in reproductive fish. Intralobular Sertoli cells possessed numerous lipid droplets in Esox lucius, but not in Esox niger. In both species, interlobular cell types included myoid cells and lipid-negative Leydig cells within the extravascular space. Evidence is presented for a contractile network of myoid cells within the testes of these teleosts. The presence of Leydig cells and myoid boundary cells in the testis of Esox lucius refutes the reported homology between lobule boundary cells and Leydig cells in this species. 相似文献
15.
Hair cell regeneration in the chick inner ear following acoustic trauma: ultrastructural and immunohistochemical studies 总被引:2,自引:0,他引:2
Masanori Umemoto Masafumi Sakagami Keijiro Fukazawa Kentaro Ashida Takeshi Kubo Takao Senda Yoshihiro Yoneda 《Cell and tissue research》1995,281(3):435-443
The regeneration of hair cells in the chick inner ear following acoustic trauma was examined using transmission electron microscopy. In addition, the localization of proliferation cell nuclear antigen (PCNA) and basic fibroblast growth factor (b-FGF) was demonstrated immunohistochemically. The auditory sensory epithelium of the normal chick consists of short and tall hair cells and supporting cells. Immediately after noise exposure to a 1500-Hz pure tone at a sound pressure level of 120 decibels for 48 h, all the short hair cells disappeared in the middle region of the auditory epithelium. Twelve hours to 1 day after exposure, mitotic cells, binucleate cells and PCNA-positive supporting cells were observed, and b-FGF immunoreactivity was shown in the supporting cells and glial cells near the habenula perforata. Spindle-shaped hair cells with immature stereocilia and a kinocilium appeared 3 days after exposure; these cells had synaptic connections with the newly developed nerve endings. The spindle-shaped hair cell is considered to be a transitional cell in the lineage of the supporting cell to the mature short hair cell. These results indicate that, after acoustic trauma, the supporting cells divide and differentiate into new short hair cells via spindle-shaped hair cells. Furthermore, it is suggested that b-FGF is related to the proliferation of the supporting cells and the extension of the nerve fibers. 相似文献
16.
Summary The ultrastructure and density of chloride cells in the gill, opercular epithelium, and opercular skin of the euryhaline self-fertilizing fish Rivulus marmoratus (Cyprinodontidae) were studied with electron and fluorescence microscopy. R. marmoratus raised from birth in 1, 50, 100, and 200% seawater were compared. Chloride cells from fish raised in each of the four salinities exhibited an invaginated pit structure at the apical crypt. Multicellular complexes were present in the 1% seawater group and in those fish raised in higher salinities where elaborate interdigitations were seen between cells. Chloride cells from gills of fish raised in 200% seawater had a significantly higher percentage of their cytoplasmic volume composed of mitochondria than did those from fish raised in 1% seawater (69.9% vs 37.4%). The opercular skin and opercular epithelium had the same density of chloride cells (4.2×104-4.5×104 chloride cells/cm2), and this number did not vary significantly with increased salinity. The opercular skin thus appears far more responsive to environmental salinity than the opercular epithelium. Chloride cells from the opercular epithelium of fish raised in 200% seawater were found to be 39% larger than those from fish raised in 1% seawater, whereas the chloride cells from the opercular skin of the 200% seawater group were 107% larger than those from the 1% seawater group. 相似文献
17.
Summary Immunofluorescence and electron microscopy were used to analyze the relationships between the organization of collagen fibrils in elasmoid scales, and the orientation of microtubules and actin microfilaments in the scleroblasts producing this collagenous stroma. Attention was focused on the basal plate of the scales because of the highly ordered three-dimensional arrangement of the collagen fibrils in superimposed plies forming an acellular plywood-like structure. The collagen fibrils are synthesized by the scleroblasts forming a monolayered pseudo-epithelium, the hyposquama, at the lowest surface of the scale. Fully developed scales with a low collagen deposition rate were compared with regenerating scales active in fibrillogenesis. When an ordered array of the collagen fibrils is found, the innermost collagen fibrils are coaligned with microtubules and actin microfilaments. Thus, because of this coalignment, microtubules and actin microfilaments of the hyposquamal scleroblasts are subjected to consecutive alterations during the formation of the plies of the basal plate. The sequence of events when the collagen fibrils change their direction from one ply to the other in the basal plate is deduced from immunofluorescence and phase-contrast-microscopic observations. During the formation of the orthogonal plywood-like structure in the regenerating scales, first microtubules may change their curse with a rotating angle of about 90°; then, actin microfilaments are disorganized and reorganized by interacting mechanically with the microtubules with which they are coaligned. Collagen fibrils are synthesized in a direction that is roughly perpendicular to that of the preceding ply. The unknown signals inducing the change in direction of the cytoskeleton may be transmitted throughout the hyposquama via gap junctions.This work is dedicated to the memory of Jacques Escaig 相似文献
18.
Brent W. Simpson Janine M. May David J. Sherman Daniel Kahne Natividad Ruiz 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1679)
The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B
370, 20150027. (doi:10.1098/rstb.2015.0027)) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface. 相似文献
19.
Summary Daily intramuscular injection of cortisol (4 mg kg–1 body weight) in rainbow trout,Salmo gairdneri, for 10 days caused significant increases in the number and individual apical surface area of gill chloride cells per mm2 of filament epithelium. Concomitantly, whole body influxes of sodium (Na+) and chloride (Cl–) increased. Acute (3 h) intra-arterial infusion of cortisol did not affect whole body Na+ or Cl– influx. A significant correlation was observed between both Na+ and Cl– influxes and the fractional apical surface area of filament chloride cells in control, sham (saline-injected) and experimental (cortisol-injected) fish. The chloride cells displayed similar ultrastructural modifications in trout undergoing cortisol treatment as in trout transferred to ion-deficient water. These findings suggest the existence of structure/function relationships in which branchial chloride cell morphology is an important determinant of Na+ and Cl– transport capacity. We conclude that chronic cortisol treatment enhances whole body Na+ and Cl– influxes by promoting proliferation of branchial chloride cells. The results of correlation analysis indicate that the chloride cell is an important site of NaCl uptake in freshwater rainbow trout. 相似文献
20.
Summary The distribution of the neuropeptide substance P, which is considered to be a neurotransmitter or neuromodulator of the central nervous system, has been studied in the cutaneous electroreceptor organs (tuberous and ampullary organs) of 3 species of gymnotid fish: Apteronotus leptorhynchus, Eigenmannia virescens and Sternopygus sp. Immunohistochemical data have revealed that substance P is never present in the afferent fibers but is specifically localized in the electroreceptors of the three species examined. Substane P immunoreactivity is strictly localized in the sensory cells of the ampullary organs of all three species and in those of the tuberous organs of Apteronotus leptorhynchus and Sternopygus sp. In contrast, weak substance P immunoreactivity was observed only in certain tuberous sensory cells of Eigenmannia. Substance P immunoreactivity was also found in the accessory cells of certain organs: it was detected in the two types of accessory cells of the tuberous organs of Eigemmannia virescens, in the accessory cells type 2 of the tuberous organs of Sternopygus sp., and in all accessory cells of ampullary organs of Sternopygus sp. and Apteronotus leptorhynchus. In Sternopygus sp., positive staining was only evident if the substance P antibody was used at low concentration. Immunoreactivity for substance P in the sensory cells suggests that it has a transmitter or modulator function in these electroreceptors; the presence of substance P in the accessory cells remains to be explained. 相似文献