首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lymphocytes respond optimally to mitogenic stimulation when cultured in serum-free medium supplemented with transferrin if fatty acids necessary for maximal proliferation are provided. Either lipoproteins or exogenous fatty acids support optimal lymphocyte responses. The current studies examined the role of cell surface receptors for low density lipoprotein (LDL) in the enhancement of lymphocyte proliferation. Support of lymphocyte growth by limiting concentrations of LDL was found to involve interaction of the lipoprotein with LDL receptors. Thus, modification of LDL by reductive methylation so as to inhibit receptor-mediated interactions markedly decreased the capacity of LDL to enhance lymphocyte proliferation. Moreover, growth of lymphocytes obtained from patients with LDL receptor-negative homozygous familial hypercholesterolemia was minimal when cultures were supplemented with low concentrations of LDL (less than 10 micrograms cholesterol/ml). LDL also enhanced lymphocyte proliferation by a receptor-independent mechanism since high concentrations (greater than or equal to 50 micrograms cholesterol/ml) supported growth of both normal and familial hypercholesterolemia lymphocytes. In contrast, support of lymphocyte proliferation by high density lipoprotein (HDL) subclass 3 was completely independent of LDL receptors. Thus, HDL3 enhanced responses of both normal and familial hypercholesterolemia lymphocytes in an equivalent concentration-dependent manner; this effect was not altered by reductive methylation of HDL3. One function of lipoproteins in this system may be the provision of fatty acids since oleic and linoleic acids enhanced DNA synthesis by both normal and familial hypercholesterolemia lymphocytes in the absence of lipoproteins. These results indicate that lipoproteins may provide fatty acids necessary for optimal proliferation of human lymphocytes by both LDL receptor-mediated and LDL receptor-independent interactions.  相似文献   

2.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

3.
Human endothelial cells (EA.hy 926 line) were loaded with cationized low density lipoprotein (LDL) and subsequently incubated with fatty acid/bovine serum albumin complexes. The fatty acids were palmitic, oleic, linoleic, arachidonic, and eicosapentaenoic acids. The preincubations resulted in extensively modified fatty acid profiles in cell membrane phospholipids and in cellular cholesteryl esters. The cholesterol efflux from these fatty acid-modified cells was measured using 0.2 mg high density lipoprotein3 (HDL3)/ml medium. The efflux was significantly higher for the palmitic acid-treated cells, compared to all other fatty acid treatments. These differences in efflux rates were not caused by changes in the binding of HDL3 to high affinity receptors on the EA.hy 926 cells. Efflux mediated by dimethyl suberimidate-treated HDL3, which does not interact with high affinity HDL receptors, was similar to efflux induced by native HDL3 after all fatty acid treatments. Our results indicate that high affinity HDL receptors are not important for HDL-mediated efflux of cell cholesterol. The fatty acid composition of the cell membrane phospholipids may be an important determinant.  相似文献   

4.
The amount of individual fatty acids contained in the main human lipoproteins VLDL, LDL, lipoprotein (a), HDL2, and HDL3 were determined by two different methods. In Method I, the lipids were first extracted by the classical Folch procedure and then transesterified with BF3/methanol and separated by capillary GC. In Method II the lipoprotein solution was freeze dried prior to transesterification with BF3/methanol. In all lipoproteins except VLDL significantly more fatty acids were found with Method II as compared to Method I. For total fatty acids the increase was up to 17.5%, for polyunsaturated fatty acids up to 24.5%. The total fatty acid content determined by Method II resembled closely the content independently derived from the enzymatically determined lipid composition. The results indicate that in case of lipoproteins quantification of fatty acids should be made with freeze-dried samples rather than with Folch extracts.  相似文献   

5.
The effects of saturated, monounsaturated and polyunsaturated non-esterified fatty acids on the rate of transfer of radiolabeled cholesteryl esters from high density lipoproteins (HDL) to low density lipoproteins (LDL), induced by the cholesteryl ester transfer protein (CETP), have been studied. Human high-density lipoproteins-subfraction 3 (HDL3) containing radiolabeled cholesteryl esters were incubated with LDL at 37 degrees C with or without CETP and in the absence or in the presence of non-esterified fatty acids. Less than 6% of the total radioactivity was recovered in the LDL fraction after incubation of HDL3, and LDL for 3 h at 37 degrees C in the absence of CETP, regardless of whether or not non-esterified fatty acids were added. The addition of CETP to the incubation mixture induced a time-dependent redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. Non-esterified fatty acids were found to alter the rate of transfer of cholesteryl esters induced by CETP. While short chain saturated non-esterified fatty acids (caprylic and capric acids) had no effect on the rate of transfer of cholesteryl esters, the medium and long chain ones (lauric, myristic, palmitic and stearic acids) significantly increased the CETP-mediated transfers from HDL3 to LDL. At low concentrations, unsaturated fatty acids also stimulated the CETP-mediated redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. As the concentration of either oleic, linoleic or arachidonic acids increased to higher levels, a significant proportion of fatty acids remained unassociated with lipoprotein particles. Under these circumstances the transfer process was inhibited. These results show that non-esterified fatty acids can modulate the CETP-mediated transfer of cholesteryl esters from HDL to LDL and that this effect is dependent on both the length and the degree of unsaturation of their monomeric carbon chain.  相似文献   

6.
In general, under isoweight conditions, different types of dietary protein or individual amino acids have little effect on lipoprotein patterns. Dietary carbohydrate tends to increase plasma triglyceride when it displaces fat, accompanied by a decrease in HDL cholesterol concentrations. Potential differential effects of types of carbohydrate are difficult to assess because of differences in rates of absorption and confounding of dietary fiber. Saturated fatty acids increase LDL and HDL cholesterol, whereas trans fatty acids increase LDL but not HDL cholesterol. Unsaturated fatty acids decrease LDL and HDL cholesterol, polyunsaturated more so than monounsaturated. There has been considerable interest in the potential benefit of major shifts in dietary macronutrients on weight loss and lipoprotein patterns. Short-term data favor substituting protein and fat for carbohydrate, whereas long-term data have failed to show a benefit for weight loss. During an active weight loss period low-carbohydrate diets more favorably affect triglyceride and HDL and less favorably affect LDL cholesterol concentrations. Additional efforts need to be focused on gaining a better understanding of the effect of dietary macronutrient profiles on established and emerging cardiovascular disease risk factors, mechanisms for changes observed and contributors to individual variability. Such data are needed to allow reassessment and, if necessary, modification of current recommendations.  相似文献   

7.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

8.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

9.
The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans. Twenty-six men and 30 women, all normolipemic and apparently healthy, completed the trial. Three experimental diets were supplied to every subject for 3 weeks each, in random order (multiple cross-over). The Linoleate-diet provided 12.0% of total energy intake as linoleic acid, 2.8% as stearic acid, and 0.1% as trans fatty acids. The Stearate-diet supplied 3.9 energy % as linoleic acid, 11.8% stearic acid, and 0.3% trans fatty acids. The Trans-diet provided 3.8 energy % as linoleic acid, 3.0% stearic acid, and 7.7% as monounsaturated trans fatty acids, largely elaidic acid (trans-C18:1(n-9)). Other nutrients were constant. Fasting blood was sampled at the end of each dietary period. Mean (+/- SD) serum LDL cholesterol was 109 +/- 24 mg/dl (2.83 +/- 0.63 mmol/l) on the Linoleate-diet. It rose to 116 +/- 27 mg/dl (3.00 +/- 0.71 mmol/l) on the Stearate-diet (change, 7 mg/dl or 0.17 mmol/l, P = 0.0008) and to 119 +/- 25 mg/dl (3.07 +/- 0.65 mmol/l) on the Trans-diet (change, 9 mg/dl or 0.24 mmol/l, P less than 0.0001). High density lipoprotein (HDL) cholesterol decreased by 2 mg/dl (0.06 mmol/l, P less than 0.0001) on the Stearate-diet and by 4 mg/dl (0.10 mmol/l, P less than 0.0001) on the Trans-diet, both relative to linoleic acid. Our findings show that 7.7% of energy (mean, 24 g/day) of trans fatty acids in the diet significantly lowered HDL cholesterol and raised LDL cholesterol relative to linoleic acid. Combination with earlier results (Mensink, R. P., and M. B. Katan. 1990. N. Engl. J. Med. 323: 439-445) suggests a linear dose-response relation. Replacement of linoleic acid by stearic acid also caused somewhat lower HDL cholesterol and higher LDL cholesterol levels. Hydrogenation of linoleic acid to either stearic or trans fatty acids produces fatty acids that may increase LDL and decrease HDL cholesterol relative to linoleic acid itself.  相似文献   

10.
N-3 polyunsaturated fatty acids and estrogens are recognized as protective factors of atherosclerosis, however their interactions on cholesterol metabolism remain unclear. Male and female hamsters were fed for 9 weeks diets containing 12.5% lipids and rich in either alpha-linolenic acid ("linseed" diet) or saturated fatty acids ("butter" diet). Hamsters fed the "linseed" diet exhibited lower plasma concentrations of cholesterol (-29%), total LDL (-35%) and HDL (-17%), glucose (-20%), insulin (-40%) and of the LDL-cholesterol/HDL-cholesterol ratio (-27%) than those fed the "butter" diet. In the liver, cholesterol content was 2.7-fold lower in response to the "linseed" diet, whereas the concentration of HDL receptor (SR-BI) and the activities of HMGCoA reductase and cholesterol 7alpha-hydroxylase were 30 to 50% higher than with the "butter" diet. By contrast, the LDL receptor concentration did not vary with the diet. Females exhibited higher concentration of LDL (+24%), lower concentration of plasma triglycerides (-34%), total VLDL (-46%) and VLDL-cholesterol (-37%) and of biliary phospholipids (-19%). Besides, there was also an interaction between gender and diet: in males fed the "butter" diet, plasma triglycerides and VLDL concentration, were 2 to 4 fold higher than in the other groups. These data suggest that gene and/or metabolic regulations by fatty acids could interact with that of sex hormones and explain why males are more sensitive to dietary fatty acids.  相似文献   

11.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

12.
Purified human cholesteryl ester transfer protein (CETP) has been found, under certain conditions, to promote changes to the particle size distribution of high-density lipoproteins (HDL) which are comparable to those attributed to a putative HDL conversion factor. When preparations of either the conversion factor or CETP are incubated with HDL3 in the presence of very-low-density lipoproteins (VLDL) or low-density lipoproteins (LDL), the HDL3 are converted to very small particles. The possibility that the conversion factor may be identical to CETP was supported by two observations: (1) CETP was found to be the main protein constituent of preparations of the conversion factor and (2) an antibody to CETP not only abolished the cholesteryl ester transfer activity of the conversion factor preparations but also inhibited changes to HDL particle size. In additional studies, the changes to HDL particle size promoted by purified CETP were inhibited by the presence of fatty-acid-free bovine serum albumin; by contrast, albumin had no effect on the cholesteryl ester transfer activity of the CETP. The possibility that albumin may inhibit changes to HDL particle size by removing unesterified fatty acids from either the lipoproteins or CETP was tested by adding exogenous unesterified fatty acids to the incubations. In incubations of HDL with either VLDL or LDL, sodium oleate had no effect on HDL particle size. However, when CETP was also present in the incubation mixtures the capacity of CETP to reduce the particle size of HDL was greatly enhanced by the addition of sodium oleate. It is concluded that the changes in HDL particle size which were previously attributed to an HDL conversion factor can be explained in terms of the interacting effects of CETP and unesterified fatty acids.  相似文献   

13.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

14.
PURPOSE OF REVIEW: The purpose is to evaluate recent findings concerning dietary fats and the risk of coronary heart disease. Monounsaturated fatty acids are often regarded as healthy, and many have recommended their consumption instead of saturated fatty acids and polyunsaturated fatty acids. Support for the benefits of monounsaturated fatty acids comes largely from epidemiological data, but they have not been an isolated, single variable in such studies. Beneficial effects on the plasma lipid profile and LDL oxidation rates have also been identified. More recent findings have questioned the impact of suspected beneficial effects on coronary heart disease, indicating that studies with more conclusive endpoints are needed. RECENT FINDINGS: Human dietary studies often produce conflicting results regarding the effects of monounsaturated and polyunsaturated fatty acids on the plasma lipid profile. Monounsaturated and polyunsaturated fatty acids both appear to reduce total and LDL-cholesterol compared with saturated fatty acids; however, the effect on HDL is less clear. Lowered HDL levels in response to low-fat or polyunsaturated fatty acid diets and the decreased protection from oxidation of polyunsaturated fatty acid-enriched LDL may not indicate increased coronary heart disease risk. Several lines of evidence also suggest that polyunsaturated fatty acids may protect against atherosclerosis. SUMMARY: Recommendations to substitute monounsaturated fatty acids for polyunsaturated fatty acids or a low-fat carbohydrate diet seem premature without more research into the effects on the development of atherosclerosis. Current opinions favoring monounsaturated fatty acids are based on epidemiological data and risk factor analysis, but are questioned by the demonstrated detrimental effects on atherosclerosis in animal models.  相似文献   

15.
We previously reported that unsaturated fatty acids stimulated low-density lipoprotein (LDL) particle uptake in J774 macrophages by increasing LDL receptor activity. Since free fatty acids (FFA) also change plasma membrane properties, a putative cholesteryl ester (CE) acceptor for selective uptake (SU), we questioned the ability of FFA to modulate SU from LDL. Using [(3)H]cholesteryl ether/(125)I-LDL to trace CE core and whole particle uptake, we found that oleic acid and eicosapentaenoic acid, but not saturated stearic acid, increased SU by 30% over control levels. An ACAT inhibitor, Dup128, abolished FFA effects on SU, indicating that increased SU by FFA was secondary to changes in cell-free cholesterol (FC). Consistent with these observations, ACAT inhibition increased cell FC and reduced LDL SU by half. The important role of plasma membrane composition was further demonstrated in that beta-cyclodextrin- (beta-CD-) mediated FC removal from the plasma membrane increased SU from LDL and was further stimulated by U18666A, a compound that inhibits FC transport between lysosomes and the plasma membrane. In contrast, cholesterol-saturated beta-CD markedly reduced LDL SU. In contrast to LDL SU, oleic acid, ACAT inhibition, U18666A, or beta-CD had no effects on HDL SU. Moreover, HDL SU was inhibited by antimouse SR-BI antibody by more than 50% but had little effect on LDL SU. In C57BL/6 mice fed a high fat diet, plasma FFA levels increased, and SU accounted for an almost 4-fold increased proportion of total cholesterol delivery to the arterial wall. Taken together, these data suggest that LDL SU is mediated by pathways independent of SR-BI and is influenced by plasma membrane FC content. Moreover, in conditions where elevated plasma FFA occur, SU from LDL can be an important mechanism for cholesterol delivery in vivo.  相似文献   

16.
Polyunsaturated fatty acids are known to affect plasma lipids and lipoproteins but there is no information on the effect of essential fatty acid (EFA) deficiency on lipoprotein composition. The purpose of this study was to characterize lipoproteins from 17 cystic fibrosis (CF) patients in relationship to their EFA status (eicosatrienoic/arachidonic acid ratio) and compare them with those of 10 healthy siblings (SIB) and of 10 unrelated controls. In 7 EFA-deficient (EFAD) and 10 EFA-sufficient (EFAS) patients, hypocholesterolemia was associated with a decrease of HDL-cholesterol and of LDL-cholesterol which was more marked in the EFAD group. Similarly, although triglyceride enrichment of VLDL, LDL, HDL2, and HDL3 with a concomitant reduction of cholesteryl esters from all particles except HDL2 was observed in both CF groups, it was more sizable in the EFAD patients. These changes led to an increase in the particle size of VLDL, LDL, and HDL2 whereas the distribution of HDL3 was skewed to smaller particles. Alterations in the apoprotein composition of particles were greater in EFAD than in EFAS. A decrease of total postheparin lipolytic activity was observed in the two groups of CF patients as well as in siblings. It was entirely accounted for by hepatic lipase (mumol FFA/ml per h) which was more severely diminished in EFAD (2.8 +/- 0.6) than in EFAS (4.4 +/- 0.7) and SIB (5.1 +/- 0.5). Although the two groups of CF children differed in terms of growth, severity of malabsorption, and vitamin E status, these data suggest that disturbance of lipoprotein concentration, composition, size, and metabolism (hepatic lipase) may be in part related to EFA deficiency. Further studies are necessary to explore the effect of EFA deficiency on hepatic lipase activity.  相似文献   

17.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids.

Methodology/Principal Findings

We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95%CI 0.044–0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95%CI 0.012–0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012–0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids).

Conclusions/Significance

Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol.  相似文献   

18.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

19.
Lipid and lipoprotein profile in women with polycystic ovary syndrome   总被引:2,自引:0,他引:2  
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by obesity-related risk factors for cardiovascular disease. The objective of our study was to determine values of key lipid and lipoprotein fractions in PCOS, and their possible relation to insulin resistance. A total of 75 women with PCOS (aged 23.1 +/- 5.1 years, BMI 24.9 +/- 4.7 kg/m(2)), and 56 age- and BMI-matched controls were investigated. In all subjects, basal glucose, cholesterol (total, HDL, and LDL), oxidized LDL (OxLDL), triglycerides, apolipoprotein (apo)A1, apoB, and apoE, nonesterified fatty acids, insulin, testosterone, sex hormone-binding globulin, homeostasis model assessment (HOMA) index, and free androgen index were determined in the follicular phase of the cycle. PCOS patients compared with controls had increased indices of insulin resistance, basal insulin (p < 0.001), and HOMA index (p < 0.001), and worsened insulin resistance-related dyslipidemia with decreased HDL cholesterol (p < 0.01), elevated triglycerides (p = 0.010), and pronounced LDL oxidation (p < 0.001). In conclusion, characteristic dyslipidemia of insulin resistance and unfavorable proatherogenic lipoprotein ratios were present only in women with PCOS and not in controls. Elevated OxLDL and the relation of apoE and nonesterified fatty acids with insulin resistance suggest that women with PCOS are at increased risk for premature atherosclerosis.  相似文献   

20.
Relative to saturated fatty acids, trans-fatty acids/hydrogenated fat-enriched diets have been reported to increase low density lipoprotein (LDL) cholesterol levels and either decrease or have no effect on high density lipoprotein (HDL) cholesterol levels. To better understand the effect of trans-fatty acids/hydrogenated fat on HDL cholesterol levels and metabolism, 36 subjects (female, n = 18; male, n = 18) were provided with each of three diets containing, as the major sources of fat, vegetable oil-based semiliquid margarine, traditional stick margarine, or butter for 35-day periods. LDL cholesterol levels were 155 +/- 27, 168 +/- 30, and 177 +/- 32 mg/dl after subjects followed the semiliquid margarine, stick margarine, and butter-enriched diets, respectively. HDL cholesterol levels were 43 +/- 10, 42 +/- 9, and 45 +/- 10 mg/dl, respectively. Dietary response in apolipoprotein (apo) A-I levels was similar to that in HDL cholesterol levels. HDL(2) cholesterol levels were 12 +/- 7, 11 +/- 6, and 14 +/- 7 mg/dl, respectively. There was virtually no effect of dietary fat on HDL3 cholesterol levels. The dietary perturbations had a larger effect on particles containing apoA-I only (Lp A-I) than apoA-I and A-II (Lp A-I/A-II). Cholesterol ester transfer protein (CETP) activity was 13.28 +/- 5.76, 15.74 +/- 5.41, and 14.35 +/- 4.77 mmol x h(-1) x ml(-1), respectively. Differences in CETP, phospholipid transfer protein activity, or the fractional esterification rate of cholesterol in HDL did not account for the differences observed in HDL cholesterol levels.These data suggest that the saturated fatty acid component, rather than the trans- or polyunsaturated fatty acid component, of the diets was the putative factor in modulating HDL cholesterol response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号