首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (C onserved in P lant L ineage and D iatoms49 ) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6f complex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6f complex. Based on motifs of CPLD49 and the activities of other CPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f.  相似文献   

3.
4.
5.
6.
Cytochrome b 6 f complexes, prepared from spinach and Chlamydomonas thylakoids, have been examined for their content of low molecular weight subunits. The spinach complex contains two prominent low molecular weight subunits of 3.7 and 4.1 kD while a single prominent component of 4.5 kD was present in the Chlamydomonas complex. An estimation of the relative stoichiometry of these subunits suggests several are present at levels approximating one copy per cytochrome complex. The low molecular weight subunits were purified by reversed phase HPLC and N-terminal sequences obtained. Both the spinach and Chlamydomonas cytochrome complexes contain a subunit that is identified as the previously characterized petG gene product (4.8 kD in spinach and 4.1 kD in Chlamydomonas). A second subunit (3.8 kD in spinach and 3.7 kD in Chlamydomonas) appears to be homologous in the two complexes and is likely to be a nuclear gene product. The possible presence of other low molecular weight subunits in these complexes is also considered.  相似文献   

7.
Several models have been proposed to interpret the mechanism of proton-pumping associated with the electron transfer reactions in the cytochrome b/f complex. Energetics considerations suggest that the proton pump is coupled to the oxidation of cytochrome b by plastoquinone. Experiments performed in living cells under anaerobic conditions suggest that proton-pumping can occur through two independent mechanisms. When the two b cytochromes are reduced prior to a flash illumination i.e. after a long dark anaerobic incubation (>10 minutes), proton-pumping is very likely associated with the reduction of a semiquinone by cyt b which occurs at a site close to the inner face of the membrane. The electrogenic phase is associated with the tranfer of protons via a transmembrane channel. This process is not inhibited by 2-n-nonyl-4-hydroxyquinoline N-oxide (NQNO). Under repetitive-flash or under aerobic conditions, proton-pumping occurs according to a modified Q-cycle mechanism, which is inhibited by NQNO.Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

8.
The chloroplast tscA gene from Chlamydomonas reinhardtii encodes a co-factor RNA that is involved in trans-splicing of exons 1 and 2 of the psaA mRNA encoding a core polypeptide of photosystem I. Here we provide molecular and genetic characterization of the trans-splicing mutant TR72, which is defective in the 3'-end processing of the tscA RNA and consequently defective in splicing exons 1 and 2 of the psaA mRNA. Using genomic complementation, two adjacent nuclear genes were identified, Rat1 and Rat2, that are able to restore the photosynthetic growth of mutant TR72. Restoration of the photosynthesis phenotype, however, was successful only with a DNA fragment containing both genes, while separate use of the two genes did not rescue the wild-type phenotype. This was further confirmed by using a set of 10 gene derivatives in complementation tests. The deduced amino acid sequence of Rat1 shows significant sequence homology to the conserved NAD+-binding domain of poly(ADP-ribose) polymerases of eukaryotic organisms. However, mutagenesis of conserved residues in this putative NAD+-binding domain did not reveal any effect on restoration efficiency. Immunodetection analyses with enriched fractions of chloroplast proteins indicated that Rat1 is associated with chloroplast membranes. Using the yeast three-hybrid system, we were able to demonstrate the specific binding of tscA RNA by the Rat1 polypeptide. We propose that the two nuclear factors Rat1 and Rat2 are involved in processing of chloroplast tscA RNA and in subsequent splicing of psaA exons 1 and 2.  相似文献   

9.
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching.  相似文献   

10.
Localization of apoproteins of the major light-harvesting complex (LHCII) in Chl b -less cells of Chlamydomonas reinhardtii cbn 1–113 was determined by immunoelectron microscopy. In dark-grown cells, a low amount of apoproteins was detected in cytoplasmic vacuoles. The amount in vacuoles, and in the cytosol, increased dramatically when the rate of protein synthesis was enhanced in the dark by raising the temperature to 38°C. After exposure of cells to light, the apoproteins accumulated also in the chloroplast. Mature-sized apoproteins were recovered in an alkali-soluble fraction of cellular proteins commensurate with accumulation in the cytoplasm. At 25°C, content of apoproteins in the chloroplast of pale-green cells grown in medium lacking acetate was one-half of the amount in cells grown with acetate, yet the total amount remained similar. Cytoplasmic vacuoles, which were nearly filled with immunoreactive, electron-opaque material, were more abundant in cells grown without acetate as compared with cells grown with acetate. Accumulation of apoproteins outside of the chloroplast suggested that translocation into the organelle of a portion of the apoproteins, apparently synthesized in excess of the amount accommodated by Chl synthesis, was aborted after processing of precursors. These results suggested that assembly of LHCII was required for retention of apoproteins by the chloroplast.  相似文献   

11.
The removal of chlorinated, nitrated, and sulfonated benzoic acids in cultures of the unicellular green alga, Chlamydomonas reinhardtii 11-32b, was investigated, and the metabolic fate of a model compound, 4-chloro-3,5-dinitrobenzoic acid, was determined. The freshwater alga was able to remove a wide variety of benzoic compounds from the incubation medium. Chlamydomonas discriminated very specifically between the benzoic acids, indicated by the varying degrees of which the test compounds disappeared from the culture medium. Moreover, the alga was capable of transforming 4-chloro-3,5-dinitrobenzoic acid to several metabolites. A release of chloride ions was observed, and 3,5- dinitro-4-hydroxybenzoic acid was identified as a major transient product in the algal metabolism of 4-chloro-3,5-dinitrobenzoic acid.  相似文献   

12.
There is a growing interest in the use of microalgae as low‐cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein‐coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome‐binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co‐introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae.  相似文献   

13.
利用从菠菜(Spinacia oleracea L.)叶绿体分离、纯化出的缺失膜脂的细胞色素b6f蛋白复合体(Cyt b6f)制剂与从菠菜类囊体分离、纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响.结果表明:被检测的5种膜脂,即单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同,这可能与这些膜脂分子的带电性质密切相关.不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常有效,可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG对活性的促进作用则相对较弱,仅可使其活性分别提高43%和26%.  相似文献   

14.
15.
16.
17.
It has been known that arginine is used as the basic amino acid in the α-subunit of cytochrome bsss (Cyt bsss) except histidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) Ⅱ and there are no reports regarding the structural and/or functional roles of arginine in PSll complexes. In the present study, two arginine18 (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in which R18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complex in the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high light intensity, oxygen evolution for the PSll of mutants was reduced to zero compared with 40% in WT cells. The efficiency of light capture by PSll (Fv/Fm) of R18G and R18E mutants was approximately 42%-46% that of WT cells. Furthermore, levels of the α-subunit of Cyt bsss and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, these data suggest that R18 plays a significant role in helping Cyt bss9 maintain the structure of the PSll complex and its activity, although it is not directly bound to the heme group.  相似文献   

18.
19.
20.
Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号