首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we have studied changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed cell death. Apoptosis in proerythroleukemic K562 cells was induced by glutathione-depleting agent, diethylmaleate (DEM). We have shown for the first time that proteasomes isolated from the nuclei of control and induces K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. We observed trypsin- and chymotrypsin-like activities on nuclear proteasomes and the specificity of proteasomal nucleolysis of several individual messenger RNAs (c-fos and c-myc) to be changed under effect of DEM on K562 cells. Treatment of K562 cells with DEM leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNAse activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasome population in undergoing apoptosis K562 cells which is manifested by the changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

2.
The induction of apoptosis in K562 cells by doxorbuicin was used as a model for studying changes of the subunit composition, phosphorylation state, and enzymatic activities of nuclear proteasomes undergoing programmed cell death. The proteasomes isolated from nuclei of the control and induced K562 cells have been shown to differ in their subunit composition, as well as in the phosphorylation state of subunits at threonine and tyrosine residues. Changes of the trypsin-and chymotrypsin-like, as well as endoribonuclease, activities of proteasomes under the doxorubicin action were revealed. After the induction of apoptosis in K562 cells by doxorubicin, we observed a modification of the RNase activity-associated proteasome subunits zeta/α5 and iota/α6. These results argue in favor of changes of proteasomal subunit composition, enzymatic activities, and the phosphorylation state, i.e., of the reprogramming of nuclear proteasome population, after the induction of apoptosis in K562 cells.  相似文献   

3.
The induction of apoptosis in K562 cells by doxorubicin (DR) was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed death. Here we have shown for the first time that proteasomes isolated from the nuclei of control and induced K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that trypsin- and chymotrypsin-like, and the endoribonuclease activities of nuclear 26S proteasomes are affected under influence of DR on K562 cells. Treatment of K562 cells with DR leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNase activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasomes population in undergoing apoptosis K562 cells which is manifested by changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

4.
Changes in the subunit composition, phosphorylation of the subunits, and regulation of the activities of 26S proteasomes in proliferating cells undergoing programmed cell death have not been studied so far. Moreover, there are no reports on phosphorylation of proteasome subunits both in normal and in neoplastic cells during apoptosis. The data of the present study show for the first time that apoptosis inductor doxorubicin regulates subunit composition, enzymatic activities, and phosphorylation state of 26S proteasomes in neoplastic (proerythroleukemic K562) cells or, in other words, induces reprogramming of proteasome population. Furthermore, the phosphorylation state of proteasomes is found to be the mechanism controlling specificity of proteasomal proteolytic and endoribonuclease activities.  相似文献   

5.
The participation of proteasome in the programmed cells death is now extensively investigated. Studies using selective inhibitors of proteasomes have provided a direct evidence of both pro- and anti-apoptotic functions of proteasomes. Such opposite roles of 26S proteasomes in regulation of apoptosis may be defined by the proliferative state of cell. The induction of apoptosis in K562 cells by diethylmaleate was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes undergoing the programmed cell death. Here we have shown that proteasomes isolated from the cytoplasm of control and diethylmaleate treated K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that proteolytic activity of 26S proteasomes is decreased, and endoribonuclease activity of 26S proteasomes is affected under diethylmaleate action on K562 cells. Treatment of K562 cells with an inductor of apoptosis--diethylmaleate--leads to modification of a proteasomal subunit (zeta/alpha5) associated with RNase activity of proteasomes. These data suggest the subunit composition and enzymatic activities of 26S proteasomes to be changed in K562 cells undergoing apoptosis, and that specific subtypes of 26S proteasomes participate in execution of programmed death of these cells.  相似文献   

6.
In eukaryotic cells the population of proteasomes is heterogeneous. Here we have shown that proteasomes from nuclei and cytoplasm of rat liver cells differ in their subunit patterns. The subunit pattern of alpha-RNP differs from that of proteasomes, however, alpha-RNP particles contain the number of 26S proteasome subunits. Moreover, the proteasomes contain subunits of alpha-RNP. We have shown for the first time that nuclear proteasomes and alpha-RNP are hyperphosphorylated on threonine residues. Differences in phosphorylation state of subunits of nuclear and cytoplasmic proteasomes and alpha-RNP on threonine and tyrosine residues have been revealed. A suggestion is put forward that hyperphosphorylation of subunits may determine nuclear localization of these complexes in rat liver cells. The results obtained suggest that a highly specialized system of protein kinases and phosphatases may be involved in the regulation of phosphorylation state of different populations of proteasomes and alpha-RNP in rat liver cells.  相似文献   

7.
8.
The comparative analysis of peptidase activities of extra- and intracellular proteasomes was carried out. Here we have shown that excreted proteasomes exhibit higher chymotrypsin-type and lower tripsin-like peptidase activities that cytoplasmic particles. Posttranslational modifications (PTMs) of 20S proteasomal subunits were revealed by immunoblotting techniques. We have observed the difference in PTMs of associated with enzymatic activities subunits beta2, beta5 and beta5 of extracellular and cytoplasmic proteasomes. Proteasomal subunits alpha2, 4, 7 and beta7 also had a variety of PTMs. The phosphorylation level of excreted proteasomes was lower compared to that of the intracellular ones. This observation strongly suggests the involvement of this PTM in the regulation of proteasomes excretion from cells.  相似文献   

9.
For the first time, it has been shown that population of proteasomes is heterogeneous in their RNAse activity. EGF exerts selective effect on different subpopulations of proteasomes. The RNAse activity of cytoplasmic proteasomes is induced under the influence of EGF on epidermoid carcinoma cell line A431. However, the activity of proteasomes isolated from culture medium and of nuclear proteasomes is inhibited by EGF. The above enzymatic activity has been shown to be specifically and selectively dependent on phosphorylation of proteasomal subunits in different subpopulations of proteasomes. Proteasome involvement in the coordinated control of specific messenger RNA molecules stability is suggested, and one of the mechanisms of this control might be an export of specific subpopulation of proteasomes from the cell.  相似文献   

10.
We have reported that proteasomes are expressed at abnormally high levels in various hematopoietic tumor cells (Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., Tachikawa, T., Shin, S., and Ichihara, A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7071-7075). In the present study, we examined changes in the expressions of proteasomes during growth of peripheral T-lymphocytes from healthy adults and differentiation of human leukemic cell lines. Up-regulation of mRNAs encoding multiple proteasome subunits was observed during proliferation of resting T-cells induced by mitogens such as phytohemagglutinin and interleukin-2. In contrast, in vitro terminal differentiation into monocytic, granulocytic, and erythroid cells of various immature leukemic cell lines, such as HL-60 promyelocytic leukemia cells and K562 erythroleukemia cells, by various inducing agents caused rapid and marked down-regulation of proteasomes expression, independently of the cell type, direction of differentiation, or type of signal. The syntheses of proteasome subunits of 21-31 kDa and their associated components of 35-110 kDa, measured by [35S]methionine incorporation, were much higher in mitogen-activated T-cells and unstimulated HL-60 cells, which grow rapidly, than in resting and differentiated cells, indicating apparent correlations of the mRNA levels of proteasomes with their translational activities. However, immunochemically, no detectable difference in the cellular contents of proteasomes was found in these cells in induced and uninduced states for proliferation and differentiation, suggesting accelerated turnover of proteasomes in rapidly proliferating cells. Inhibition of proteasome expression by an antisense oligodeoxynucleotide for the largest proteasome subunit, C2, caused partial arrest of cell cycle progression of T-lymphocytes, suggesting that up-regulation of proteasomes is indispensable for proliferation of the cells. We also observed that the nuclear fraction of proteasomes increased in proliferating T-cells and that proteasomes moved rapidly between the nucleus and cytoplasm during differentiation of HL-60 cells.  相似文献   

11.
The proteasome is the main protease for extralysosomal protein degradation in eukaryotic cells, and constitutes a sophisticated high molecular mass proteinase complex underlying a tightly coordinated expression and assembly of multiple subunits and subcomplexes. Here we show that continuous inhibition of proteasomal chymotrypsin-like peptidase activity by the proteasome inhibitor bortezomib induces in human Namalwa Burkitt lymphoma cells increased de novo biogenesis of proteasomes accompanied by increased expression of the proteasome maturation protein POMP, increased expression of 19S-20S-19S proteasomes, and abrogation of expression of beta 1i, beta 2i and beta 5i immunosubunits and PA28 in favor of increased expression of constitutive proteolytic beta1, beta2 and beta 5 subunits and 19S regulatory complexes. These alterations of proteasome expression and subunit composition are accompanied by an increase in proteasomal caspase-like, trypsin-like and chymotrypsin-like peptidase activities, not inhibitable by high doses of bortezomib. Cells harboring these proteasomal alterations display rapid proliferation and cell cycle progression, and acquire resistance to apoptosis induced by proteasome inhibitors, gamma-irradiation and staurosporine. This acquired apoptosis resistance is accompanied by de novo expression of anti-apoptotic Hsp27 protein and the loss of ability to accumulate and stabilize pro-apoptotic p53 protein. Thus, increased expression, altered subunit composition and increased activity of proteasomes constitute a hitherto unknown adaptive and autoregulatory feedback mechanism to allow cells to survive the lethal challenge of proteasome inhibition and to establish a hyperproliferative and apoptosis-resistant phenotype.  相似文献   

12.
Proteosomes from human proerythroleukaemic cell line K562 are found to degrade high molecular weight cytoplasmic RNAs, particularly ribosomal and specific messenger RNA. This activity was observed to be endoribonucleotylic. The induction of differentiation by erythroid pathway in K562 cells invokes augmentation of endonuclease activity in proteasomes. The number of characteristics of this enzymatic activity was investigated. Specificity of endonuclease of these RNPs is shown to be Ca- and Mg-dependent. Dephosphorylation of protein subunits suppresses RNase activity of proteasomes. Endonuclease of proteasomes is thermolabile. The examined activity depends on the secondary structure of substrate RNA. Protein subunits are responsible for ribonuclease activity of proteasomes rather than for low molecular weight RNAs associated with the complex.  相似文献   

13.
The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits.  相似文献   

14.
C Enenkel  A Lehmann    P M Kloetzel 《The EMBO journal》1998,17(21):6144-6154
26S proteasomes are the key enzyme complexes responsible for selective turnover of short-lived and misfolded proteins. Based on the assumption that they are dispersed over the nucleoplasm and cytoplasm in all eukaryotic cells, we wanted to determine the subcellular distribution of 26S proteasomes in living yeast cells. For this purpose, we generated yeast strains that express functional green fluorescent protein (GFP) fusions of proteasomal subunits. An alpha subunit of the proteolytically active 20S core complex of the 26S proteasome, Pre6/YOL038w, as well as an ATPase-type subunit of the regulatory 19S cap complex, Cim5/YOL145w, were tagged with GFP. Both chimeras were shown to be incorporated completely into active 26S proteasomes. Microscopic analysis revealed that GFP-labelled 20S as well as 19S subunits are accumulated mainly in the nuclear envelope (NE)-endoplasmic reticulum (ER) network in yeast. These findings were supported by the co-localization and co-enrichment of 26S proteasomes with NE-ER marker proteins. A major location of proteasomal peptide cleavage activity was visualized in the NE-ER network, indicating that proteasomal degradation takes place mainly in this subcellular compartment in yeast.  相似文献   

15.
It has been shown that endoribonuclease activity of alpha-RNP particles and 26S proteasomes are changed under the action of inductors of programmed cell death. Treatment of K562 cells with inductors of apoptosis--doxorubicin (adriamycin) and diethylmaleate--lead to a significant stimulation of RNAse activity of alpha-RNP and to reduction of proteasome RNase activity. The enzymatic activity under study has been shown to be specifically and selectively dependent on phosphorylation of subunits of alpha-RNP particles and 26S proteasomes. The characteristics of RNAse activity of different subpopulations of proteasomes differ. The specificity of a subpopulation of proteasomes exported from the cell has been demonstrated. Proteasome and alpha-RNP involvement in the coordinated control of stability of various specific messenger RNA molecules is suggested, and one of the mechanisms of this control might be the export of specific subpopulation of proteasomes from the cell.  相似文献   

16.
The specificity of the 26S proteasome endoribonuclease activity in proerythroleukemic K562 cells has been shown to change under the effects of inducers of erythroid differentiation inducers led to specific stimulation of RNase activity for certain mRNAs and to reduction of proteasome RNase activity for other mRNAs. The studied enzymatic activity was shown to be specifically and selectively dependent on phosphorylation of the 26S proteasome subunits, as well as on Mg and Ca ions. It was shown that the specificity of the proteasome RNase activity is regulated during differentiation and apoptosis. Selective regulation of the proteasome via the activities of different nuclease centers was suggested. This regulation may be accomplished through changes in the phosphorylation state of the proteasome subunits as well as by cation homeostasis.  相似文献   

17.
《FEBS letters》1997,403(3):313-317
Proteasomes function mainly in the ATP-dependent degradation of proteins that have been conjugated with ubiquitin. To demonstrate the phosphorylation of proteasomes in plants, we conducted an enzymatic dephosphorylation experiment with a crude extract of rice cultured cells. The results indicated that the C2 subunit of the 20S proteasome is phosphorylated in vivo in cultured cells. An in-gel kinase assay and analysis of phosphoamino acids revealed that the C2 subunit is phosphorylated by a 40-kDa serine/threonine protein kinase, the activity of which is inhibited by heparin, a specific inhibitor of casein kinase II. The catalytic subunit of casein kinase II from Arabidopsis was also able to phosphorylate the C2 subunit. These results suggest that the C2 subunit in rice is probably phosphorylated by casein kinase II. Our demonstration of the phosphorylation of proteasomes in plants suggests that phosphorylation might be involved in the general regulation of the functions of proteasomes.© 1997 Federation of European Biochemical Societies.  相似文献   

18.
For the first time it has been shown that RNase activity is induced under the influence of EGF on epidermoid carcinoma cell line A431. Proteasomes from EGF-treated A431 cells destabilize the 3'-untranslated regions of non-muscle beta actin mRNA, creating a specific cleavage pattern. In addition, these particles have been shown to specifically cleave Alu-containing informational RNA. The enzymatic activity under study has been shown to be dependent on phosphorylation of proteasomal subunits and specifically and selectively regulated by Ca and Mg ions. Proteasome involvement in the coordinated control of stability of specific messenger RNA molecules is suggested. The endoribonuclease activity of 26S proteasomes can constitute a link between EGF signaling pathways and RNA stability.  相似文献   

19.
Possible mechanism of nuclear translocation of proteasomes   总被引:6,自引:0,他引:6  
Proteasomes (multicatalytic proteinase complexes), which are identical to the ubiquitous eukaryotic 20S particles, are localized in both the cytoplasm and the nucleus, but the mechanism of their co-localization in the two compartments is unknown. On examination of the primary structures of subunits of proteasomes, a consensus sequence for nuclear translocation of proteins, X-X-K-K(R)-X-K(R) (where X is any residue), was found to be present in some subunits and to be highly conserved in the subunits of a wide range of eukaryotes. In addition, proteasomal subunits were found to bear a cluster of acidic amino acid residues and also a potential tyrosine phosphorylation site that was located in the same polypeptide chain as the nuclear location signal. These structural properties suggest that two sets of clusters with positive and negative charges serve to regulate the translocation of proteasomes from the cytoplasm to the nucleus, and that phosphorylation of tyrosine in certain subunits may play an additional role in transfer of proteasomes into the nucleus.  相似文献   

20.
Proteasomes carry out regulated proteolysis of most proteins in a cell and thereby play a crucial role in the regulation of various cellular processes. Determination of the subunit composition and posttranslational modifications of proteasomes is one of the important stages in understanding of proteasomes functions in the cell and mechanisms of their regulation. To solve this problem a strategy of affinity purification of proteasomes with the subsequent mass spectrometric analysis has been implemented, using human myelogenous leukemia cells. Proteasomes have been purified from the stable K562 cell line expressing β7 (PSMB4) subunit of the 20S proteasome tagged with C-terminal HTBH peptide containing two His6 fragments, the specific site of cleavage by Tobacco Etch Virus (TEV) protease, and signal sequence for biotinylation in vivo, using method of noncovalent binding through formation of biotin complex with streptavidin with the subsequent elution with TEV protease. All known subunits of the 26S proteasome, as well as PA200 and PA28γ regulators have been identified using MALDI FT-ICR mass spectrometry. We have demonstrated that the heat shock proteins, components of the ubiquitin-proteasome system, and some cytoskeleton proteins are associated with proteasomes. A number of new sites of phosphorylation, ubiquitination, and N-terminal modification have been found for 16 proteasome subunits. The presented mass spectrometric analysis will be useful for the further proteomic studies of proteasomes under cellular stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号