首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.  相似文献   

2.
Feral animals represent an important problem in many ecosystems due to interbreeding with wild conspecifics. Hybrid offspring from wild and domestic parents are often less adapted to local environment and ultimately, can reduce the fitness of the native population. This problem is an important concern in Norway, where each year, hundreds of thousands of farm Atlantic salmon escape from fish farms. Feral fish outnumber wild populations, leading to a possible loss of local adaptive genetic variation and erosion of genetic structure in wild populations. Studying the genetic factors underlying relative performance between wild and domesticated conspecific can help to better understand how domestication modifies the genetic background of populations, and how it may alter their ability to adapt to the natural environment. Here, based upon a large-scale release of wild, farm and wild x farm salmon crosses into a natural river system, a genome-wide quantitative trait locus (QTL) scan was performed on the offspring of 50 full-sib families, for traits related to fitness (length, weight, condition factor and survival). Six QTLs were detected as significant contributors to the phenotypic variation of the first three traits, explaining collectively between 9.8 and 14.8% of the phenotypic variation. The seventh QTL had a significant contribution to the variation in survival, and is regarded as a key factor to understand the fitness variability observed among salmon in the river. Interestingly, strong allelic correlation within one of the QTL regions in farmed salmon might reflect a recent selective sweep due to artificial selection.  相似文献   

3.
Analysis of genetic variation within and among samples of naturally produced Atlantic salmon ( n  = 372) from 7 Maine (U.S.A.) and one Canadian river were conducted based on 54 allozyme loci. Eight of the 54 loci proved polymorphic, and estimated heterozygosities ( H S) based on all loci ranged from 0·012 to 0·026 (mean = 0·021, s . e . = 0·002). Only one of 56 tests revealed genotypic proportions that deviated significantly from Hardy–Weinberg expectations. Genetic distances ( D ) between samples ranged from 0·002 to 0·022. No obvious association existed between genetic and geographic distances. Cluster analysis of genetic distances revealed the Dennys River sample as the most differentiated when all samples were included in the analysis, though bootstrap support of the cluster analysis was generally weak. G ‐tests revealed significant differences in allele frequencies among samples at five of the polymorphic loci, and the G ‐value summed over all loci also indicated significant differences among samples. F ST values indicated that 3·4% of the total genetic diversity was due to variability among samples, while 96·6% was due to variability within samples. These results indicate that the Atlantic salmon analyzed in this study had levels of genetic variability and differentiation among samples comparable to native populations from other areas collected across a similar geographic range.  相似文献   

4.
The relationship between heterozygosity at genetic markers (six allozyme and eight microsatellite loci), and fluctuating asymmetry (FA), length and weight was investigated in two samples of Atlantic salmon (Salmo salar L.) with different timings of first active feeding (early (EA) and late (LA) salmon). This trait had previously been related to fitness. EA fish show smaller values of FA, are longer, heavier and are more heterozygous at allozyme loci than are conspecific LA fish. Also within both samples, heterozygosity at allozyme loci was inversely related to FA and was positively related to weight and length. However, no significant differences in microsatellite diversity (heterozygosity and mean d2 measurements) were observed between samples (EA vs LA). Furthermore, no association was observed between the variability at microsatellite loci and FA, weight or length within each sample. These results suggest that allozyme loci, in themselves, influence fitness components, rather than associations arising from associative overdominance.  相似文献   

5.
Levels of genetic variability at 12 microsatellite loci and 19 single nucleotide polymorphisms in mitochondrial DNA were studied in four farm strains and four wild populations of Atlantic salmon. Within populations, the farm strains showed significantly lower allelic richness and expected heterozygosity than wild populations at the 12 microsatellite loci, but a significantly higher genetic variability with respect to observed number of haplotypes and haplotype diversity in mtDNA. Significant differences in allele- and haplotype-frequencies were observed between farm strains and wild populations, as well as between different farm strains and between different wild populations. The large genetic differentiation at mitochondrial DNA between wild populations (FST = 0.24), suggests that the farm strains attained a high mitochondrial genetic variability when created from different wild populations seven generations ago. A large proportion of this variability remains despite an expected lower effective population size for mitochondrial than nuclear DNA. This is best explained by the particular mating schemes in the breeding programmes, with 2–4 females per male. Our observations suggest that for some genetic polymorphisms farm populations might currently hold equal or higher genetic variability than wild populations, but lower overall genetic variability. In the short-term, genetic interactions between escaped farm salmon and wild salmon might increase genetic variability in wild populations, for some, but not most, genetic polymorphisms. In the long term, further losses of genetic variability in farm populations are expected for all genetic polymorphisms, and genetic variability in wild populations will be reduced if escapes of farm salmon continue.  相似文献   

6.
MHC-mediated mate choice increases parasite resistance in salmon   总被引:1,自引:0,他引:1  
Natural (parasite-driven) and sexual selection are thought to maintain high polymorphism in the genes of the major histocompatibility complex (MHC), but support for a link between mate choice, MHC variation and increased parasite resistance is circumstantial. We compared MHC diversity and Anisakis loads among anadromous Atlantic salmon (Salmo salar L.) returning to four rivers to spawn, which had originated from natural spawning (parents allowed to mate freely) or artificial crosses (parents deprived from the potential benefits of mate choice). We found that the offspring of artificially bred salmon had higher parasite loads and were almost four times more likely to be infected than free-mating salmon, despite having similar levels of MHC diversity. Moreover, the offspring of wild salmon were more MHC dissimilar than the offspring of artificially crossed salmon, and uninfected fish were more dissimilar for MHC than infected fish. Thus, our results suggest a link between disassortative mating and offspring benefits and indicate that MHC-mediated mate choice and natural (parasite-driven) selection act in combination to maintain MHC diversity, and hence fitness. Therefore, artificial breeding programmes that negate the potential genetic benefits of mate choice may result in inherently inferior offspring, regardless of population size, rearing conditions or genetic diversity.  相似文献   

7.
Synopsis We investigated the relationship between conservation status and genetic variability in European and North American Atlantic salmon, Salmo salar, populations, many of which have suffered severe bottlenecks. A negative north--south cline exists for the status of population conservation in this species. A literature review of genetic variability and demographic parameters of wild Atlantic salmon populations resulted in no statistical associations between population conservation status and genetic variation at enzyme or VNTR loci. We found however, a negative relationship between male parr maturation rates and geographical latitude for both American and European populations. The increase in effective population size due to participation by mature male parr and the increased proportions of these males in smaller (southern) populations could explain the lack of expected relationship between genetic variation and conservation status.  相似文献   

8.
1. An important goal of conservation biology is to preserve the evolutionary potential of a species by maintaining natural levels of genetic diversity. Here, we assess the population differentiation in the Atlantic salmon, Salmo salar, listed in Annex II of the European Habitats Directive, to provide valuable information for its conservation in Normandy (France).
2. Samples collected from 10 natural sites revealed that 13 of 14 microsatellite loci were polymorphic. Significant differentiation among populations was detected ( F ST = 0.054, P  <   0.001), and all F ST pairwise comparisons except one were significant. A genetic split was observed between populations inhabiting streams with limestone geology compared to those inhabiting streams with siliceous geology, which could reflect adaptative differences.
3. Hatchery stocks used for the restocking of two rivers were genetically distinct from native stocks.
4. Analysis of three stream habitats restored in 1995 showed that all were recolonized naturally by wild salmon from geographically close populations and no founder effects were detected. Allelic richness was similar between recolonized and wild populations.
5. From a management perspective, our study revealed that restoration of habitat is very effective to recreate new populations in rivers from which salmon have disappeared and that natural recolonization can be fast and effective in terms of genetic diversity.  相似文献   

9.
Limited dispersal and connectivity in marine organisms can have negative fitness effects in populations that are small and isolated, but reduced genetic exchange may also promote the potential for local adaptation. Here, we compare the levels of genetic diversity and connectivity in the coral Montastraea cavernosa among both central and peripheral populations throughout its range in the Atlantic. Genetic data from one mitochondrial and two nuclear loci in 191 individuals show that M. cavernosa is subdivided into three genetically distinct regions in the Atlantic: Caribbean-North Atlantic, Western South Atlantic (Brazil) and Eastern Tropical Atlantic (West Africa). Within each region, populations have similar allele frequencies and levels of genetic diversity; indeed, no significant differentiation was found between populations separated by as much as 3000 km, suggesting that this coral species has the ability to disperse over large distances. Gene flow within regions does not, however, translate into connectivity across the entire Atlantic. Instead, substantial differences in allele frequencies across regions suggest that genetic exchange is infrequent between the Caribbean, Brazil and West Africa. Furthermore, markedly lower levels of genetic diversity are observed in the Brazilian and West African populations. Genetic diversity and connectivity may contribute to the resilience of a coral population to disturbance. Isolated peripheral populations may be more vulnerable to human impacts, disease or climate change relative to those in the genetically diverse Caribbean-North Atlantic region.  相似文献   

10.
This paper explores the evolutionary implications of the enormous variability that characterizes populations of RNA viruses and retroviruses. It begins by examining the magnitude of genetic variation in both natural and experimental populations. In natural populations, differences arise even within individual infected patients, with the per-site nucleotide diversity at this level ranging from < 1% to 6%. In laboratory populations, two viruses sampled from the same clone differed by ∼0.7% in their fitness. Three different mechanisms that may be important in maintaining viral genetic variability were tested: (1) Fisher's fundamental theorem, to compare the observed rate of fitness change with the extent of fitness-related variation within the same experimental populations; (2) magnitude of genomic mutation rate, to assess whether it correlated with fitness-related variation, as predicted by the mutation-selection balance hypothesis; (3) frequency-dependent selection, which affords rare genotypes an advantage. The paper concludes with a discussion of two evolutionary consequences of variability: the fixation of deleterious mutations by drift in small populations and the role of clonal interference in large ones.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 17–26.  相似文献   

11.
The genetic diversity of anadromous and freshwater Atlantic salmon ( Salmo salar ) populations from north-west Russia and other north European locations was compared using microsatellite variation to evaluate the importance of anadromous migration, population size and population glacial history in determining population genetic diversity and divergence. In anadromous Atlantic salmon populations, the level of genetic diversity was significantly higher and the level of population divergence was significantly lower than among the freshwater Atlantic salmon populations, even after correcting for differences in stock size. The phylogeographic origin of the populations also had a significant effect on the genetic diversity characteristics of populations: anadromous populations from the basins of the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than anadromous populations from the Baltic Sea basin. Among the freshwater populations, the result was the opposite: the Baltic freshwater populations were more variable. The results of this study imply that differences in the level of long-term gene flow between freshwater populations and anadromous populations have led to different levels of genetic diversity, which was also evidenced by the hierarchical analysis of molecular variance. Furthermore, the results emphasize the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash. Hence, high conservation status is warranted in order to ensure the long-term survival of the limited number of European populations with this life-history strategy.  相似文献   

12.
Juan L. Bouzat 《Genetica》2000,110(2):109-115
A fundamental criterion for recognizing species or populations as potentially endangered is the presence/absence of genetic diversity. However, the lack of control populations in many studies of natural systems deprives one from unambiguous criteria for evaluating the genetic effects of small population size and its potential effects on fitness. In this study, I present an example of how the lack of adequate controls may lead to erroneous conclusions for understanding the role that population size may play in the preservation of genetic diversity and fitness of natural populations. The genetic analysis of a population of greater prairie chickens from Illinois, USA, between two time periods (1974–1987 and 1988–1993) in which the studied population experienced a substantial reduction in size and fitness showed no apparent associations between population size and genetic diversity. However, genetic analysis of museum specimens from early this century indicated that Illinois prairie chickens had originally higher levels of genetic diversity, which suggest the Illinois population was already bottlenecked by the 1970s. This study emphasizes the importance of using historical controls to evaluate the temporal dynamics of genetic variability in natural populations. The large number of museum collections worldwide may provide a valuable source of genetic information from past populations, particularly in species currently endangered as a result of human activities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Consuegra S  Johnston IA 《Genetica》2008,134(3):325-334
We examined the polymorphism of the lysyl oxidase (LOX) locus, involved in the initiation of muscle collagen cross-linking, in three populations of Atlantic salmon with different life histories and growth rates and compared it with a closely related species (rainbow trout). Up to four alleles were observed per individual, probably as a consequence of the tetraploid origin of the salmonid genome. We found high polymorphism in the LOX locus (16 alleles expressed in total and several low frequency private alleles) in two natural Atlantic salmon populations and extremely reduced diversity in a farmed population (3 alleles) with low density of collagen crosslinks. We also assessed the relative role of selection in maintaining LOX genetic variability in Atlantic salmon. Results from several neutrality tests suggest that selection is playing a role in shaping diversity at the LOX locus. Positive selection was inferred by three different likelihood phylogeny-based methods and one selected site, identified by all three different methods (PAML, FEL and REL) was located within the “copper-talon” characteristic of LOX proteins. We suggest that the retention of four alleles in the salmon LOX locus could be related to its multiple functions.  相似文献   

14.
Climate change models predict a 2 to 6° C increase in air temperature within the next 100 years in the Maritime Provinces of eastern Canada. Higher air temperatures are expected to contribute to increased water temperatures, alterations in stream flow conditions, and ultimately reductions in fish growth. Mean annual size-at-age of juvenile Atlantic salmon Salmo salar decreased in the Northwest Miramichi and Southwest Miramichi Rivers between 1971–1999. Lengths-at-age of juveniles were significantly correlated between the two rivers. For Atlantic salmon parr, stronger associations between inter-cohort fork length ( L F) than intra-cohort L F were observed, suggesting that environmental conditions in the current year of growth have the more significant effects on size of age 2 year parr than conditions encountered the previous year by age 1 year parr of the same cohort. Fork lengths of parr were significantly and negatively associated with spring air and water temperatures. In the Miramichi River, increases in air and water temperature as predicted from climate change models may adversely affect growth of juvenile Atlantic salmon parr, reducing the overall productivity of the Atlantic salmon populations in this region.  相似文献   

15.
In species with complex life cycles, life history theory predicts that fitness is affected by conditions encountered in previous life history stages. Here, we use a 4‐year pedigree to investigate if time spent in two distinct life history stages has sex‐specific reproductive fitness consequences in anadromous Atlantic salmon (Salmo salar). We determined the amount of years spent in fresh water as juveniles (freshwater age, FW, measured in years), and years spent in the marine environment as adults (sea age, SW, measured in sea winters) on 264 sexually mature adults collected on a river spawning ground. We then estimated reproductive fitness as the number of offspring (reproductive success) and the number of mates (mating success) using genetic parentage analysis (>5,000 offspring). Sea age is significantly and positively correlated with reproductive and mating success of both sexes whereby older and larger individuals gained the highest reproductive fitness benefits (females: 62.2% increase in offspring/SW and 34.8% increase in mate number/SW; males: 201.9% offspring/SW and 60.3% mates/SW). Younger freshwater age was significantly related to older sea age and thus increased reproductive fitness, but only among females (females: ?33.9% offspring/FW and ?32.4% mates/FW). This result implies that females can obtain higher reproductive fitness by transitioning to the marine environment earlier. In contrast, male mating and reproductive success was unaffected by freshwater age and more males returned at a younger age than females despite the reproductive fitness advantage of later sea age maturation. Our results show that the timing of transitions between juvenile and adult phases has a sex‐specific consequence on female reproductive fitness, demonstrating a life history trade‐off between maturation and reproduction in wild Atlantic salmon.  相似文献   

16.
In this study, we documented the breeding system of a wild population of Atlantic salmon (Salmo salar L.) by genetically sampling every returning adult and assessed the determinants of individual fitness. We then quantified the impacts of catch and release (C&R) on mating and reproductive success. Both sexes showed high variance in individual reproductive success, and the estimated standardized variance was higher for males (2.86) than for females (0.73). We found a weak positive relationship between body size and fitness and observed that fitness was positively correlated with the number of mates, especially in males. Mature male parr sired 44% of the analysed offspring. The impact of C&R on the number of offspring was size dependent, as the reproductive success of larger fish was more impaired than smaller ones. Also, there was an interactive negative effect of water temperature and air exposure time on reproductive success of C&R salmon. This study improves our understanding of the complex reproductive biology of the Atlantic salmon and is the first to investigate the impact of C&R on reproductive success. Our study expands the management toolbox of appropriate C&R practices that promote conservation of salmon populations and limit negative impacts on mating and reproductive success.  相似文献   

17.
Egg size is considered to be a major maternal effect for offspring in oviparous organisms. It has profound consequences on fitness, and differences in egg size are viewed as plastic responses to environmental variability. However, it is difficult to identify the effect of egg size per se because egg size can covary with genetic features of the mother and with other nongenetic factors. We analysed the relationship between offspring starting size (i.e. a proxy of egg size) and larval survival in the frog Rana latastei . We analysed this relationship: (1) among five populations at different altitudes; (2) among clutches laid from different females; and (3) among siblings within clutches, to evaluate the effect of starting size. We observed differences among populations for offspring size, but starting size was not related to altitude or genetic diversity. Mortality was higher in populations and families with small average starting size; however, among siblings, the relationship between starting size and mortality was not verified. The relationship observed among clutches may therefore be caused by covariation between egg size and other effects. This suggests that the covariation between egg size and other effects can result in apparent relationships between egg size and fitness-related traits. Proximate and ultimate factors can cause the phenotypic variation of hatchlings in the wild, and key traits can be related to this variation, but the underlying causes require further investigation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 845–853.  相似文献   

18.
Atlantic salmon is characterized by a high degree of population genetic structure throughout its native range. However, while populations inhabiting rivers in Norway and Russia make up a significant proportion of salmon in the Atlantic, thus far, genetic studies in this region have only encompassed low to modest numbers of populations. Here, we provide the first “in‐depth” investigation of population genetic structuring in the species in this region. Analysis of 18 microsatellites on >9,000 fish from 115 rivers revealed highly significant population genetic structure throughout, following a hierarchical pattern. The highest and clearest level of division separated populations north and south of the Lofoten region in northern Norway. In this region, only a few populations displayed intermediate genetic profiles, strongly indicating a geographically limited transition zone. This was further supported by a dedicated cline analysis. Population genetic structure was also characterized by a pattern of isolation by distance. A decline in overall genetic diversity was observed from the south to the north, and two of the microsatellites showed a clear decrease in number of alleles across the observed transition zone. Together, these analyses support results from previous studies, that salmon in Norway originate from two main genetic lineages, one from the Barents–White Sea refugium that recolonized northern Norwegian and adjacent Russian rivers, and one from the eastern Atlantic that recolonized the rest of Norway. Furthermore, our results indicate that local conditions in the limited geographic transition zone between the two observed lineages, characterized by open coastline with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them.  相似文献   

19.
Farmed fish are typically genetically different from wild conspecifics. Escapees from fish farms may contribute one-way gene flow from farm to wild gene pools, which can depress population productivity, dilute local adaptations and disrupt coadapted gene complexes. Here, we reanalyse data from two experiments (McGinnity et al., 1997, 2003) where performance of Atlantic salmon (Salmo salar) progeny originating from experimental crosses between farm and wild parents (in three different cohorts) were measured in a natural stream under common garden conditions. Previous published analyses focussed on group-level differences but did not account for pedigree structure, as we do here using modern mixed-effect models. Offspring with one or two farm parents exhibited poorer survival in their first and second year of life compared with those with two wild parents and these group-level inferences were robust to excluding outlier families. Variation in performance among farm, hybrid and wild families was generally similar in magnitude. Farm offspring were generally larger at all life stages examined than wild offspring, but the differences were moderate (5–20%) and similar in magnitude in the wild versus hatchery environments. Quantitative genetic analyses conducted using a Bayesian framework revealed moderate heritability in juvenile fork length and mass and positive genetic correlations (>0.85) between these morphological traits. Our study confirms (using more rigorous statistical techniques) previous studies showing that offspring of wild fish invariably have higher fitness and contributes fresh insights into family-level variation in performance of farm, wild and hybrid Atlantic salmon families in the wild. It also adds to a small, but growing, number of studies that estimate key evolutionary parameters in wild salmonid populations. Such information is vital in modelling the impacts of introgression by escaped farm salmon.  相似文献   

20.
The relations between allozyme heterozygosity, relative date of first feeding and life history strategy in juvenile Atlantic salmon Salmo salar were examined using eggs obtained from a 400 family cross (20 male × 20 female adult Atlantic salmon). Multilocus heterozygosity, through its positive associations with the timing of first feeding and growth rate, was correlated with life history strategy in juvenile Atlantic salmon, albeit under genotype × environmental (temperature, food availability) regulation. Under hatchery conditions, a 10 day difference was observed in the relative date of first feeding between early and late first feeding Atlantic salmon. Early first feeding Atlantic salmon exhibited a significantly higher mean heterozygosity, grew faster at ambient water temperature (April to November) and a significantly higher proportion adopted the early freshwater maturation (age 0+ years, male fish) or early migrant (age 1+ years, mainly female fish) strategies compared to late first feeding Atlantic salmon. Elevated water temperatures over the winter (December to April, >10·5° C) provided additional growth opportunity allowing previously mature male parr (mainly early first feeders) and lower modal group parr (mainly late first feeders) to adopt the early migrant strategy by the following spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号