首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The S-locus glycoprotein gene, SLG, which participates in the pollen-stigma interaction of self-incompatibility, and its unlinked homologue, SLR1, were analyzed in Raphanus sativus and three self-incompatible ornamental plants in the Brassicaceae. Among twenty-nine inbred lines of R. sativus, eighteen S haplotypes were identified on the basis of DNA polymorphisms detected by genomic Southern analysis using Brassica SLG probes. DNA fragments of SLG alleles specifically amplified from eight S haplotypes by PCR with class I SLG-specific primers showed different profiles following polyacrylamide gel electrophoresis, after digestion with a restriction endonuclease. The nucleotide sequences of the DNA fragments of these eight R. sativus SLG alleles were determined. Degrees of similarity of the nucleotide sequences to a Brassica SLG (S? 6 SLG) ranged from 85.6% to 91.9%. Amino acid sequences deduced from these had the twelve conserved cysteine residues and the three hypervariable regions characteristic of Brassica SLGs. Phylogenetic analysis of the SLG sequences from Raphanus and Brassica revealed that the Raphanus SLGs did not form an independent cluster, but were dispersed in the tree, clustering together with Brassica SLGs. These results suggest that diversification of the SLG alleles of Raphanus and Brassica occurred before differentiation of these genera. Although SLR1 sequences from Orychophragmus violaceus were shown to be relatively closely related to Brassica and Raphanus SLR1 sequences, DNA fragments that are highly homologous to the Brassica SLG were not detected in this species. Two other ornamental plants in the Brassicaceae, which are related more distantly to Brassica than Orychophragmus, also lacked sequences highly homologous to Brassica SLG genes. The evolution of self-incompatibility in the Brassicaceae is discussed.  相似文献   

2.
Polymorphism of the S-locus glycoprotein (SLG) and S-locus receptor kinase (SRK) genes in Raphanus sativus was analyzed by PCR-RFLP using SLG- and SRK-specific primers. Twenty four inbred lines of R. sativus could be grouped into nine S haplotypes. DNA fragments of SLG alleles specifically amplified from five S haplotypes by PCR with Class-I SLG-specific primers showed different profiles upon polyacrylamide-gel electrophoresis after digestion with restriction endonucleases. The five R. sativus SLG alleles were determined for their nucleotide sequences of DNA fragments. Comparison of the amino-acid sequences with a reported Brassica SLG (S6) showed 77-84% homology. Deduced amino-acid sequences showed 12-conserved cystein residues and three hypervariable regions which are characteristic of Brassicsa SLG. A DNA fragment was also amplified by PCR from two of each S haplotype with Class-II SLG-specific primers, and showed polymorphism when cleaved with restriction endonucleases. The nucleotide sequences of amplified DNA fragments of the Class-II SLG revealed about 60% similarity with those of the Class-I SLG. It is concluded that there exist both Class I and Class II S alleles in R. sativus, as in Brassica campestris and Brassica oleracea. PCR using SRK-specific primers amplified a DNA fragment of about 1.0 kb from seven of each S haplotype out of 24 tested. These DNA fragments showed high polymorphism in polyacrylamide-gel electrophoresis after digestion with restriction endonucleases. Nucleotide sequences of the DNA fragments amplified from the seven S haplotypes showed that the fourth and the fifth exons of SRK are highly conserved, and that there is high variation in the fifth intron, the sixth intron and seventh exon of the SRK which may be responsible for the polymorphic band patterns in PCR-RFLP analysis. The PCR-RFLP method has proven useful for the identification of S alleles in inbred lines and for listing S haplotypes in R. sativus. Phylogenic analysis of the SLG and SRK sequences from Raphanus and Brassica revealed that the Raphanus SLGs and SRKs did not form an independent cluster, but were dispersed in the tree, clustering together with Brassica SLGs and SRKs. Furthermore, SLGs and SRKs from Raphanus were both grouped into Class-I or Class-II S haplotypes. Therefore, these results suggest that the diversification of the SLG and SRK alleles occurred prior to the differentiation of the two genera Brassica and Raphanus.  相似文献   

3.
Summary Genetic and molecular analysis of the self-incompatibility locus (S-locus) of the crucifer Brassica has led to the characterization of a multigene family involved in pollen-stigma interactions. While the crucifer Arabidopsis thaliana does not have a self-incompatibility system, S-related sequences were detected in this species by cross-hybridization with Brassica DNA probes. In this paper, we show that an A. thaliana S-related sequence, designated AtS1, is expressed specifically in flower buds. Sequence analysis suggests that AtS1 encodes a secreted glycoprotein that is most similar to the Brassica S-locus related protein SLR1. As has been proposed for SLR1, this gene may be involved in determining some fundamental aspect of pollen-stigma interactions during pollination. The molecular and genetic advantages of the Arabidopsis system will provide many avenues for testing this hypothesis.  相似文献   

4.
Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica. Received: 15 April 1997 / Accepted: 13 June 1997  相似文献   

5.
Brassica napus is an amphidiploid plant which is self-compatible even though it is derived from hybridisation of the self-incompatible species B. oleracea and B. campestris. Experiments were undertaken to establish if S-locus glycoprotein (SLG) genes exist in B. napus and whether these are expressed as in self-incompatible Brassica species. Two different stigma-specific cDNA sequences homologous to SLG genes were obtained from the B. napus cultivar Westar. One of these sequences, SLG WS1, displayed highest homology to class I SLG alleles, whereas the other, SLG WS2, showed greatest homology to class II SLG genes. Both were expressed at high levels in Westar stigmas following a developmental pattern typical of SLG genes in the self-incompatible diploids. We infer that they represent the endogenous SLG genes at the two homoeologous S-loci. The occurrence of normally expressed SLG genes and its relevance to the self-compatible phenotype of B. napus is discussed.  相似文献   

6.
In Brassica, the S-locus glycoprotein (SLG) gene has been strongly implicated in the self-incompatibility reaction. Several alleles of this locus have been sequenced, and accordingly grouped as class I (corresponding to dominant S-alleles) and class II (recessive). We recently showed that a self-compatible (Sc) line of Brassica oleracea expressed a class II-like SLG (SLG-Sc) gene. Here, we report that the SLG-Sc glycoprotein is electrophoretically and immunochemically very similar to the recessive SLG-S15 glycoprotein, and is similarly expressed in stigmatic papillae. Moreover, by seed yield analysis, we observe that both alleles are associated with a self-compatibility response, in contrast with the other known recessive S haplotypes (S2 and S5). By genomic DNA blot analysis, we show the existence of molecular homologies between the Sc and S15 haplotypes, but demonstrate that they are not identical. On the other hand, we also report that the S2 haplotype expresses very low amounts of SLG glycoproteins, although it exhibits a self-incompatible phenotype. These results strongly question the precise role of the SLG gene in the molecular mechanisms that control the self-incompatibility reaction of Brassica.  相似文献   

7.
Self-incompatibility (SI) is reported to play a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In Brassica, two S-locus genes expressed in the stigma, S-locus glycoprotein (SLG) gene and S-locus receptor kinase (SRK) gene, and one expressed in the pollen, S-locus protein 11 (SP11) gene, were linked as an S haplotype. In order to analyze the evolutionary relationships of S haplotypes in Brassica, a total of 39 SRK, 37 SLG, and 58 SP11 sequences of Brassica oleracea, Brassica rapa and Brassica napus were aligned. Two phylogenetic trees with similar pattern were constructed based on the nucleotide sequences of SRK/SLG and SP11, respectively. Class I and class II alleles were clustered into two distinct groups, and alleles from different species, including all the interspecific pairs of S haplotypes, were closely related to each other. The S-locus genes identified in B. napus were intermingled in phylogenetic trees. All these observations showed that class I and class II S haplotypes diverged ahead of the species differentiation in Brassica. The evolution and the genetic diversity of S haplotypes in Brassica were discussed. Moreover, the relationships between S haplotypes and SI phenotypes in Brassica, especially in B. napus, were also discussed.  相似文献   

8.
A genomic library from an S 29/S 29 self-incompatible genotype of Brassica oleracea was screened with a probe carrying part of the catalytic domain of a Brassica S-receptor kinase (SRK)-like gene. Six positive phage clones with varying hybridisation intensities (K1 to K6) were purified and characterised. A 650–700 by region corresponding to the probe was excised from each clone and sequenced. DNA and predicted protein sequence comparisons based on a multiple alignment identified K5 as a pseudogene, whereas the others could encode functional proteins. K3 was found to have lost an intron from its genomic sequence. The six genes display different degrees of sequence similarity and form two distinct clusters in a dendrogram. The 98% similarity between K4 and K6, which extends across intron sequences, suggests that these might be very recently diverged alleles or daughters of a duplication. In addition, K2 showed a comparably high similarity to the probe. Clones K1, K3 and K5 cross-hybridised with an SLG 29 cDNA probe, indicating the presence of upstream receptor domains homologous to the Brassica SLG gene. This suggests that the previously reported S sequence complexity may be ascribed to a large receptor kinase gene family.  相似文献   

9.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

10.
The karyotype and genomic in situ hybridization (GISH) of an intergeneric hybrid Baemoochae, ×Brassicoraphanus, which originated from hybridization between Chinese cabbage, Brassica campestris (synonym, rapa) ssp. pekinensis, and radish, Raphanus sativus, were analyzed to determine its chromosome complement. In the karyotype analysis, B. campestris was verified to have 2n = 20 chromosomes, including a particular pair of the subtelomeric chromosomes with the nucleolar organizer; R. sativus to have 2n = 18 chromosomes, including a particular pair of the submetacentric chromosomes with the secondary constriction of nucleolar organizer; and ×Brassicoraphanus to have 2n = 38 chromosomes, including both the subtelomeric chromosomes of Brassica and the secondary constriction chromosome pair of Raphanus. These findings indicate that ×Brassicoraphanus is a polyploid between Brassica and Raphanus. In the GISH analysis using chromosomes of B. campestris and R. sativus as the probe and blocking DNA, respectively, only 20 chromosomes of Brassica had hybridization signals. This result reveals that ×Brassicoraphanus is an intergeneric hybrid consisting of the complete genomes of both Brassica and Raphanus. However, the nucleolar organizers of Brassica and Raphanus were not identified because the hybridization signals appeared to be centering mainly around the centromere, becoming weak at the edges.  相似文献   

11.
Summary In Brassica oleracea, the pollen-stigma interaction of self-incompatibility is controlled by a single genetically defined locus designated S. Molecular studies have identified two genes that are tightly linked to the classically defined S locus: The S-Locus Glycoprotein (SLG) gene and the S-Receptor Kinase (SRK) gene. In previous RFLP linkage analyses with probes specific for SLG and SRK, we were unable to identify any recombination events between SLG, SRK, and self-incompatibility phenotype. In this paper, we use pulsed-field gel electrophoresis (PFGE) in conjunction with DNA blot analysis to characterize the S-locus region from two highly divergent self-incompatibility genotypes, S 2 and S 6. We establish the physical linkage of SLG and SRK in each genotype, and demonstrate that the two genes are separated by a maximum distance of 220 kb in the S 6 genotype and 350 kb in the S 2 genotype. Furthermore, a comparison of the data from the two genotypes reveals that a high level of polymorphism exists across the entire S-locus region.  相似文献   

12.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

13.
In Brassica, self-incompatibility genes SLG (for S-locus glycoprotein) and SRK (for S-receptor kinase) are located in the S-locus complex region with several other S-linked genes. The S locus is a highly polymorphic region: polymorphism has been observed not only in sequences of SLG and SRK but also in the location of the S-locus genes. In order to compare the physical location of the S-locus genes in various S haplotypes, we used six class-I S haplotypes of B. rapa and seven class-I S haplotypes of B. oleracea in this study. DNA gel blot analysis using pulsed-field gel electrophoresis (PFGE) showed that the physical distances between SLG and SRK in B. rapa are significantly shorter than those in B. oleracea and that the sizes of MluI and BssHII fragments harboring SLG and SRK are less variable within B. rapa than within B. oleracea. We concluded that several large genomic fragments might have been inserted into the S-locus region of B. oleracea after allelic differentiation of S-locus genes. Received: 20 September 1999 / Accepted: 8 October 1999  相似文献   

14.
TheSLR1 gene inBrassica is related both in DNA sequence and in pattern of expression to theS-locus glycoprotein (SLG) gene involved in the self-incompatibility mechanism which recognises and arrests the germination of self pollen. However,SLR1 shows minimal allelic variation and is expressed in both self-incompatible and compatibleBrassica lines and in related, self-compatible cruciferous plants. The function of the SLR1 protein is unknown. TheSLR1 gene was specifically ablated in self-incompatible and self-compatibleBrassica plants byAgrobacterium-mediated transformation with an antisense construct. Primary transformants and homozygous T2 progeny of both self-incompatibleB. oleracea and self-compatibleB. napus recipients were found to exhibit normal pollination responses despite having no detectable SLR1 glycoprotein. This shows that the high, wild-type level of SLR1 protein is not required to sustain the self-incompatibility reaction, nor is it necessary for successful intra-specific cross-pollination between compatible lines.  相似文献   

15.
 DNA polymorphism of the S-locus receptor kinase gene (SRK) participating in self-incompatibility in Brassica was analyzed by PCR-RFLP and nucleotide sequencing. In the screening of primers for specific amplification of polymorphic DNA fragments of SRK, the best combination was that of a forward primer (PK1) having the nucleotide sequence of the second exon of S6 SRK and a reverse primer (PK4) having the complementary nucleotide sequence of the fifth exon of S6 SRK. PCR using this primer pair amplified DNA fragments of 0.9–1.0 kb from 36 S haplotypes out of 42 tested. These DNA fragments showed high polymorphism in polyacrylamide-gel electrophoresis after digestion with restriction endonuclease(s): 25 types were found in a double digestion with MboI and AfaI. Nucleotide sequencing of the DNA fragments amplified from five S haplotypes showed that the third, fourth, and fifth exons of SRK are highly conserved, and that there are high variations of the second and third introns of SRK, which produced polymorphism of the band pattern in PCR-RFLPs. Another forward primer (PK5) having the nucleotide sequence of the second exon, which is derived from S2 SRK, amplified DNA fragments of almost the same region of SRK from 27 S haplotypes in combination with PK4. Although SRK alleles of the class-II S haplotypes were not amplified, all of the class-I S-haplotypes were amplified with a primer mixture of PK1, PK4 and PK5. The DNA fragments of both SRK alleles in S heterozygotes, or a 1 : 1 mixture of the genomic DNA of different S homozygotes, were amplified without exception, suggesting the usefulness of these primers for the identification of S heterozygotes. The DNA fragment sizes obtained by digestion with restriction endonucleases served as markers for the identification of S haplotypes. Received: 15 December 1996 / Accepted: 14 February 1997  相似文献   

16.
In Brassica species, self-incompatibility in the recognition reaction between self and non-self pollens is determined by two genes, SLG and SRK, at the S locus. We have cloned and characterized a genomic DNA fragment containing a complete open reading frame of the SLG gene from Chinese cabbage. The genomic clone, named BcSLG2, was found to possess the region that shares a homology of 77% in amino acid identity with the SLG46 gene of Brassica campestris. Northern blot analysis revealed that the BcSLG2 gene expression is restricted to the pistil of Chinese cabbage flower. In situ hybridization showed that in the pistil, the gene is expressed predominantly in the stigmatic tissue. Much lower expression in the tapetum was also detectable at an immature stage of the flower development. Southern blot hybridization with the BcSLG2 DNA probe showed polymorphism in the SLG gene organization of the Chinese cabbage plants. These results will provide valuable information in understanding the S gene complex of the Chinese cabbage plants.  相似文献   

17.
Polymorphism of SLG (the S-locus glycoprotein gene) in Brassica campestris was analyzed by PCR-RFLP using SLG-specific primers. Nucleotide sequences of PCR products from 15 S genotypes were determined in order to characterise the exact DNA fragment sizes detected in the PCR-RFLP analysis. Forty-seven lines homozygous for 27 S-alleles were used as plant material. One combination of primers, PS5 + PS 15, which had a nucleotide sequence specific to a class-I SLG, gave amplification of a single DNA fragment of approximately 1.3kb from the genomic DNA of 15 S genotypes. All the DNA fragments showed different electrophroetic profiles from each other after digestion with MboI or MspI. Different lines having the same S genotype had an identical electrophoretic profile even between the lines collected in Turkey and in Japan. Another class-I SLG-specific primer, PS 18, gave amplification of a 1.3-kb DNA fragment from three other S genotypes in combination with PS 15, and the PCR product also showed polymorphism after cleavage with the restriction endonucleases. Genetic analysis, Southern-hybridization analysis, and determination of the nucleotide sequences of the PCR products suggested that the DNA fragments amplified with these combinations of primers are class-I SLGs. Expected DNA fragment sizes in the present PCR-RFLP condition were calculated from the determined nucleotide sequence of SLG PCR products. A single DNA fragment was also amplified from six S genotypes by PCR with a combination of primers, PS3 + PS21, having a nucleotide sequence specific to a class-II SLG. The amplified DNA showed polymorphisnm after cleavage with restriction endonucleases. The cleaved fragments were detected by Southern-hybridization analysis using a probe of S 5 SLG cDNA, a class-IISLG. Partial sequencing revealed a marked similarity of these amplified DNA fragments to a class-II SLG, demonstrating the presence of class-I and class-II S alleles also in B. campestris. The high SLG polymorphism detected by the present investigation suggests the usefulness of the PCR-RFLP method for the identification of S alleles in breeding lines and for listing S alleles in B. campestris.  相似文献   

18.
Self-incompatibility is a genetic mechanism enforcing cross-pollination in plants. Hazelnut (Corylus avellana L.) expresses the sporophytic type of self-incompatibility, for which the molecular genetic basis is characterized only in Brassica. The hypothesis that the hazelnut genome contains homologs of Brassica self-incompatibility genes was tested. The S-locus glycoprotein gene (SLG) and the kinase-encoding domain of the S-receptor kinase (SRK) gene of B. oleracea L. were used to probe blots of genomic DNA from six genotypes of hazelnut. Weak hybridization with the SLG probe was detected for all hazelnut genotypes tested; however, no hybridization was detected with PCR-generated probes corresponding to two conserved regions of the SLG gene. One of these PCR probes included the region of SLG encoding the 11 invariant cysteine residues that are an important structural feature of all S-family genes. The present evidence suggests that hazelnut DNA hybridizing to SLG differs significantly from the Brassica gene, and that the S-genes cloned from Brassica will not be useful for exploring self-incompatibility in hazelnut.  相似文献   

19.
20.
A total of 54 samples of Brassicaceae crops showing symptoms of mosaic, mottling, vein banding and/or leaf deformation were collected in Kyiv region (northern central part of Ukraine) in 2014–2015. A half of collected samples was found to be infected with Turnip mosaic virus (TuMV), and TuMV was detected in samples from Brassica oleracea var. capitata (cabbage), Raphanus sativus, Brassica juncea, Raphanus sp., Sinapis alba, Camelina sativa and Bunias orientalis (weed). The full‐length sequence of the genomic RNA of a Ukrainian isolate (UKR9), which was isolated from cabbage, was determined. Recombination analysis of UKR9 isolate showed that this isolate was an interlineage recombinant of world‐Brassica and Asian‐Brassica/Raphanus phylogenetic groups. This study shows for the first time the occurrence of TuMV in Ukraine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号