首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exceptional characteristics of amino proton exchange in guanosine compounds   总被引:2,自引:0,他引:2  
B McConnell  D J Rice  F D Uchima 《Biochemistry》1983,22(13):3033-3037
Amino 1H NMR line width as a measure of amino proton exchange in guanosine compounds is completely unaffected by the addition of ca. 1 M tris(hydroxymethyl)-aminomethane, imidazole, 2-(N-morpholino)ethanesulfonic acid, glycine, or cacodylate, all shown to be effective buffer catalysts in adenosine and cytidine proton exchange. Line broadening, seen only with phosphate and acetate, is established by intermolecular interactions, as well as by amino to water proton exchange. This absence of buffer catalysis of exchange is accounted for by the relatively small implied effect of G(N-7) protonation on amino acidity, based on similar observations with 7-methylguanosine as a model for endocyclic protonation. The requirement for diffusion-controlled proton transfer in buffer catalysis is achieved by nucleobase protonation in adenine and cytosine, but not in guanine.  相似文献   

2.
General acid-base catalysis in nucleobase amino proton exchange: cytidine   总被引:2,自引:0,他引:2  
A useful property of DMSO solvent has been exploited to reveal a new catalytic route for cytidine amino proton exchange, relevant to exchange in the macromolecular state, but hidden in aqueous solution. Additional exchange mechanisms in aqueous monomeric cytidine (and adenosine) are obscured by the formation of a fast-exchanging endocyclic-protonated intermediate, which dominates the kinetics. Endocyclic nucleobase protonation could be circumvented in the presence of buffer conjugate acid by the use of DMSO/water solvent, permitting the first unequivocal observation buffer acid-catalyzed exchange from the neutral, unprotonated nucleobase, i.e., general acid catalysis. Because buffer ionization is greatly reduced in DMSO through anion desolvation, nucleobase protonation is suppressed in the presence of buffer acid. Evidence is presented to describe this catalytic route as one involving hydrogen bond formation between the buffer acid and the endocyclic protonation site, C(N-3). Since this same configuration is found in Watson-Crick hydrogen bonding, experiments are presented to demonstrate faster cytidine amino proton exchange with the formation of the G-C base pair in DMSO. The importance of this mechanism in past aqueous monomer studies and in the interpretation of macromolecular (DNA) hydrogen exchange is discussed.  相似文献   

3.
4.
Using the stopped-flow kinetic method we have measured the deuteration rate of the amino protons in 2'deoxyguanosine 5'monophosphate and 7-methylguanosine 5'monophosphate. For both compounds the exchange rates are accelerated with increasing concentration of a large number of buffers with widely differing pKs. The results obtained, in conjunction with a theoretical model study, give rise to serious doubts concerning the normally accepted mechanism of amino proton exchange involving a pre-protonation at N7.  相似文献   

5.
The use of buffer catalysts having a wide range of pK (dissociation) values (4-12) provides the first estimates of two generally useful empirical parameters of amino proton exchange in compounds of adenine and cytosine. These are a nucleobase amino group dissociation constant (pKD) and the 'encounter frequency' for proton transfer (kD), which can be used to predict amino proton exchange rates. Values of amino pKD fall in the range 8.6-9.4 for the unsubstituted nucleobases and their endocyclic N-methylated derivatives. Similar values of kD are obtained for all nucleobases (1 X 10(8) M-1 s-1). These constants were obtained from a statistical fit of second-order catalytic rate constants for amino proton exchange, measured by amino 1H-NMR lineshape at varying field frequencies (100, 300 and 360 MHz). These results confirm the requirement for buffer conjugate base formation and nucleobase protonation, but point to a different mechanism of exchange at low pH; most probably direct amino protonation for adenine, but not for cytosine compounds. Anionic buffer conjugate bases (phosphate and acetate) show a greater catalytic effect than neutral (nitrogen) bases, especially with cytosine compounds. The use of high concentrations of sodium perchlorate to sharpen amino 1H resonances of 1-methyladenosine is examined, with respect to chemical and rotational exchange and NMR line broadening.  相似文献   

6.
Polyaromatic molecules with amino chain substituents, upon binding with DNA, selectively catalyze exchange of the A.T base pair protons with bulk water protons. The amine-catalyzed exchange is mediated by compounds which are A.T and G.C base sequence specific, intercalators, and outside binders. A mechanism for the selective exchange, involving transient opening and closing of individual A.T base pairs in the duplex, is discussed.  相似文献   

7.
B Hartmann  M Leng  J Ramstein 《Biochemistry》1986,25(11):3073-3077
The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results.  相似文献   

8.
9.
F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F1 and proton channel F0 formed from the alpha3beta3gammadelta and ab2c10 subunit complexes, respectively. The rotation of gammaepsilonc10 couples catalyses and proton transport. Consistent with the threefold symmetry of the alpha3beta3 catalytic hexamer, 120 degrees stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the beta subunit (phosphate-binding P-loop/alpha-helix B/loop/beta-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.  相似文献   

10.
11.
M J Lane  G J Thomas 《Biochemistry》1979,18(18):3839-3846
Pseudo-first-order rate constants governing the deuterium exchange of 8-CH groups in guanosine 5'-monophosphate (5'-rGMP) and guanosine 3':5'-monophosphate (cGMP) were determined as a function of temperature in the range 30-80 degrees C by means of laser-Raman spectroscopy. For each guanine nucleotide the logarithm of the rate constant exhibits a strictly linear dependence on reciprocal temperature: i.e., k psi = Ae-Ea/RT with A = 8.84 X 10(14) h-1 and Ea = 24.6 kcal/mol for 5'-rGMP and A = 3.33 X 10(13) h-1 and Ea = 22.2 kcal/mol for cGMP. Exchange of the 8-CH groups in guanine nucleotides is generally 2-3 times more rapid than in adenine nucleotides [cf. g. j. thomas, Jr., & J. Livramento (1975) Biochemistry 14, 5210-5218]. As in the case of adenine nucleotides, cyclic and 5' nucleotides of guanine exchange at markedly different rates at lower temperatures, with exchange in the cyclic nucleotide being the more facile. Each of the guanine nucleotides was prepared in four different isotopic modifications for Raman spectral analysis. The Raman frequency shifts resulting from the various isotopic substitutions have been tabulated, and assignments have been given for most of the observed vibrational frequencies.  相似文献   

12.
Mass spectrometry is used to probe the kinetics of hydrogen–deuterium exchange in lysozyme in pH 5, 6 and 7.4. An analysis based on a Verhulst growth model is proposed and effectively applied to the kinetics of the hydrogen exchange. The data are described by a power-like function which is based on a time-dependence of the exchange rate. Experimental data ranging over many time scales is considered and accurate fits of a power-like function are obtained. Results of fittings show correlation between faster hydrogen–deuterium exchange and increase of pH. Furthermore a model is presented that discriminates between easily exchangeable hydrogens (located in close proximity to the protein surface) and those protected from the exchange (located in the protein interior). A possible interpretation of the model and its biological significance are discussed.  相似文献   

13.
The rate of proton exchange of the amino protons of phosphatidylethanolamine (PE) in sonicated mixed phospholipid vesicles has been determined by NMR spectroscopy. The rate of exchange increases with increasing pH and phosphate concentration. In the absence of buffer the dominant exchange process is an intrasurface reaction in which NH2 groups react via water with NH3+ groups on the outer surface. Addition of cholesterol reduces the rate constant for intrasurface exchange. The experiments are evidence that such reactions could be dominant in proton transport in and to membrane surfaces.  相似文献   

14.
Multidimensional NMR methods were used to obtain 1H-15N correlations and 15N resonance assignments for amide and side-chain nitrogens of oxidized and reduced putidaredoxin (Pdx), the Fe2S2 ferredoxin, which acts as the physiological reductant of cytochrome P-450cam (CYP101). A model for the solution structure of oxidized Pdx has been determined recently using NMR methods (Pochapsky TC, Ye XM, Ratnaswamy G, Lyons TA, 1994, Biochemistry 33:6424-6432) and redox-dependent 1H NMR spectral features have been described (Pochapsky TC, Ratnaswamy G, Patera A, 1994, Biochemistry 33:6433-6441). 15N assignments were made with NOESY-(1H/15N) HMQC and TOCSY-(1H/15N) HSQC spectra obtained using samples of Pdx uniformly labeled with 15N. Local dynamics in both oxidation states of Pdx were then characterized by comparison of residue-specific amide proton exchange rates, which were measured by a combination of saturation transfer and H2O/D2O exchange methods at pH 6.4 and 7.4 (uncorrected for isotope effects). In general, where exchange rates for a given site exhibit significant oxidation-state dependence, the oxidized protein exchanges more rapidly than the reduced protein. The largest dependence of exchange rate upon oxidation state is found for residues near the metal center and in a region of compact structure that includes the loop-turn Val 74-Ser 82 and the C-terminal residues (Pro 102-Trp 106). The significance of these findings is discussed in light of the considerable dependence of the binding interaction between Pdx and CYP101 upon the oxidation state of Pdx.  相似文献   

15.
M Gutman  E Nachliel  E Gershon 《Biochemistry》1985,24(12):2937-2941
The laser-induced proton pulse generates a massive, brief, proton pulse capable of perturbing biochemical equilibria. The time resolution of the monitoring system can follow the diffusion-controlled protonation of specific sites on macromolecular bodies [Gutman, M. (1984) Methods Biochem. Anal. 30, 1-103]. In order to apply this method in enzymology, one must first evaluate how the buffer capacity of biochemical systems (substrates and proteins) will affect the observed dynamics. Unlike equilibrium measurements, where buffer is an inert component, in kinetic studies buffer modulates the observed dynamics. In this paper we analyze the effect of buffer on the dynamics of protonation in a model system. We describe the experimental technique and introduce the mathematical formalism that determines the various rate constants involved in the reaction. The analysis of the experiments indicates that in buffered solution proton flux is carried by two mechanisms: (A) proton dissociation followed by free proton diffusion; (B) collisional proton transfer between small diffusing solutes. We demonstrate how to evaluate the contribution of each pathway to the overall proton flux.  相似文献   

16.
Acid-induced exchange of the imino proton in G.C pairs.   总被引:1,自引:1,他引:0       下载免费PDF全文
Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine.  相似文献   

17.
The three-dimensional structures of rabbit and human liver cytosolic serine hydroxymethyltransferase revealed that H231 interacts with the O3' of pyridoxal-5'-phosphate and other residues at the active site such as S203, K257, H357 and R402 (numbering as per the human enzyme). This and the conserved nature of H231 in all serine hydroxymethyltransferases highlights its importance in catalysis and/or maintenance of oligomeric structure of the enzyme. In an attempt to decipher the role of H230 (H231 of the human enzyme) in the catalytic mechanism and/or maintenance of oligomeric structure of sheep liver serine hydroxymethyltransferase, the residue was mutated to arginine, phenylalanine, alanine, asparagine or tyrosine. Our results suggest that the nature of the amino acid substitution has a marked effect on the catalytic activity of the enzyme. H230R and H230F mutant proteins were completely inactive, dimeric and did not bind pyridoxal-5'-phosphate. On the other hand, mutation to alanine and asparagine retained the oligomeric structure and ability to bind pyridoxal-5'-phosphate. These mutants had only 2-3% catalytic activity. The side reactions like transamination and 5,6,7, 8-tetrahydrofolate independent aldol cleavage were much more severely affected. They were able to form the external aldimine with glycine and serine but the quinonoid intermediate was not observed upon the addition of 5,6,7,8-tetrahydrofolate. Mutation to tyrosine did not affect the oligomeric structure and pyridoxal-5'-phosphate binding. The H230Y enzyme was 10% active and showed a correspondingly lower amount of quinonoid intermediate. The kcat / Km values for L-serine and Lallothreonine were 10-fold and 174-fold less for this mutant enzyme compared to the wild-type protein. These results suggest that H230 is involved in the step prior to the formation of the quinonoid intermediate, possibly in orienting the pyridine ring of the cofactor, in order to facilitate effective proton abstraction.  相似文献   

18.
19.
Y Z Chen  W Zhuang  E W Prohofsky 《Biopolymers》1991,31(11):1273-1281
Modified self-consistent phonon theory when applied to the DNA double helix indicates the existence of fairly long-lived states in which single interbase H bonds are disrupted. One can then postulate a number of situations in which particular disrupted H bonds can enhance particular proton exchange. In this paper we postulate a number of such partially open states for a B-conformation GC base pair and calculate the probability of each of these states for a B-conformation poly(dG).poly(dC). We compare these probabilities to those probabilities needed to explain various observed proton exchange rates. We propose that, for a GC base pair in B conformation, there are two amino proton exchangeable states--a cytosine amino proton exchangeable state and a guanine amino proton exchangeable state; both require the disruption of only the corresponding interbase H bond. The imino proton exchange, however, requires the disruption of all three interbase H bonds and this defines a third open state. Our calculated probabilities for a GC base pair in these three states are in fair agreement with available experimental estimates from measurements of amino and imino proton exchange.  相似文献   

20.
We observed that the synthesis of basal-level guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA mutants and relA+ relC strains of Escherichia coli decreased in response to amino acid limitation and that this was accompanied by an increase in ribonucleic acid (RNA) synthesis. Addition of the required amino acid to starved cultures of relaxed bacteria resulted in the resumption of ppGpp synthesis and a concomitant decrease in RNA production. Our results indicate that relA mutants retain a stringent factor-independent ribosomal mechanism for basal-level ppGpp synthesis. They also suggest that in relA+ bacteria, stringent factor-mediated ppGpp synthesis and the production of basal-level ppGpp are mutually exclusive. These findings substantiate the hypothesis that there are two functionally discrete mechanisms for ppGpp synthesis in E. coli. Through these studies we have also obtained new evidence which indicates that ppGpp serves as a modulator of RNA synthesis during balanced growth as well as under conditions of nutritional downshift and starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号