首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational preferences of the hypermodified nucleic acid bases N6-methyl-N6-(N-threonylcarbonyl) Adenine, m6tc6 Ade, and 2-methylthio-N6-(N-threonylcarbonyl) Adenine, mS2 tc6 Ade, have been studied theoretically using the quantum chemical PCILO (Perturbative Configuration Interaction using Localized Orbitals) method. The multidimensional conformational space has been searched using selected grid points formed by combining the various torsion angles which take the favoured values obtained from energy variation with respect to each torsion angle individually. In m6 tc6 Ade and mS 2tc6 Ade alike the threonylcarbonyl substituent preferably orients away (distal) from the imidazole moiety of the adenine ring. And as in the simpler N6-(N-threonylcarbonyl) Adenine, tc6 Ade, the atoms in the ureido group as well as the amino acid carbon atoms C(12) and C(13) remain coplanar with the purine base. As in tc6 Ade, this conformation is stabilized by the intramolecular hydrogen bond between N(11)H of the amino acid and N(1) of the adenine base. The N6-methyl protons, in m6 tc6 Ade, take trans-staggered orientation with respect to the C(6)-N(6) bond. The preferred orientation of the 2-methylthio group is cis to the C(2)-N(3) bond in mS 2tc6 Ade. This is in marked contrast to the modified nucleic acid base 2-methylthio-N6-(delta 2-isopentenyl) Adenine, mS 2i6 Ade, where the 2-methylthio group orients trans to the C(2)-N(3) bond, causing a change in the preferred orientation of the isopentenyl component on methylthiolation. The present results thus indicate that unlike in the isopentenyl adenine the role of further chemical substitutions in threonylcarbonyl adenine may be indirect and less pronounced.  相似文献   

2.
The contribution of steric and negative charge factors to the resistance of uridylyl(3' - 5')N6-(N-threonylcarbonyl)adenosine to venom phosphodiesterase was investigated. The hydrolysis rates of uridylyl(3'-5')N6-(N-threonylcarbonyl)-adenosine, its model derivatives, methyl ester and O-benzyl ester, together with unmodified uridyly (3'-5')adenosine, were studied. It was found that the contribution of both factors is of the same order. The steric inhibition of digestion is distinctly higher than that confirmed by N6-(delta2-isopentenyl)adenosine [1], which is ascribed to the rigid conformation of the threonylcarbonyladenosine side chain.  相似文献   

3.
The synthesis and biological evaluation of novel N(6)-substituted adenosine derivatives is reported. The first series of compounds was obtained using an established procedure for the nucleophilic substitution of a 1-(6-chloro-purin-9-yl)-beta-D-1-deoxy-ribofuranose with various amines. In addition, attachment of two different amino-functionalised spacer arms at the N(6)-position of adenosine enabled derivatisation by an innovative polymer-assisted protocol. Thus, we were able to prepare three series of substituted derivatives that displayed activity versus the multiresistant Plasmodium falciparum strain Dd2 in cell culture experiments.  相似文献   

4.
A series of novel 3'-amido-3'-deoxy-N(6)-(1-naphthylmethyl)adenosines was synthesized applying a polymer-assisted solution phase (PASP) protocol and was tested for anti-malarial activity versus the Dd2 strain of Plasmodium falciparum. Further, this series and 62 adenosine derivatives were analyzed regarding 1-deoxy-d-xylulose 5-phosphate (DOXP) reductoisomerase inhibition. Biological evaluations revealed that the investigated 3',N(6)-disubstituted adenosine derivatives displayed moderate but significant activity against the P. falciparum parasite in the low-micromolar range. On the molecular level, DOXP reductoisomerase utilizing an adenosyl-containing substrate was identified as a promising metabolic target for ligands of adenosine binding motifs.  相似文献   

5.
6.
The specific modification of N6-delta 2-(isopentenyl)adenosine in purified tRNA Ser yeast by mild treatment with KMnO4 and I2 was studied. N6-delta 2-(isopentenyl)adenosine in tRNA SER is specifically modified by iodination, providing us with a suitable method for the quantitative determination of N6-delta 2-(isopentenyl)adenosine in tRNA was found to contain 114 +/- 8 pmol/A260nm unit of N6-delta 2-(isopentenyl)adenosine and gave three labelled fractions on an RPC-5 column. The product obtained after KMnO4 treatment of tRNA Ser was not homogeneous. The enzymatic "reisopentenylation" of KMnO4-treated tRNA Ser resulted in the regeneration of only traces of the original molecule(s). Most of them had been damaged either by the KMnO4 treatment or in the incubation mixture used for "reisopentenylation".  相似文献   

7.
An investigation, using specific chemical reagents, of the amino acids involved in the catalytic activity of the purified 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from bovine liver plasma membranes, was carried out. The enzyme was irreversibly inactivated by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The inhibition kinetics were of the first-order type and decreased partially in the presence of nucleotides and divalent cations. These results indicate for the first time that a carboxyl group is essential for the catalytic process of 5'-nucleotidase. Moreover, chemical modification by diethylpyrocarbonate also produced inactivation of the enzyme and showed a differential spectrum with a peak at 240 nm characteristic of N-carbethoxyhistidine residues. This inactivation was efficiently released upon decarbethoxylation by hydroxylamine only when the extent of inactivation, due to low concentration of diethylpyrocarbonate, was limited. The time-dependent inactivation followed first-order kinetics and nucleotides afforded significant protection against diethylpyrocarbonate modification. The results indicate the involvement of the histidine residue in catalysis.  相似文献   

8.
9.
10.
11.
The role of carboxyl group in the catalytic action of xylanase (Mr 35 000) from an alkalothermophilic Bacillus sp. was delineated through iinetic and chemical modification studies using Woodward's Reagent K. The kinetics of inactivation indicated that one carboxyl residue was essential for the xylanase activity with a second order rate constant of 3300 M−1 min−1. The spectrophotometric analysis at 340 nm revealed that the inhibition was correlated with modification of 24 carboxyl residues. In the presence of protecting ligand, modification of one carboxyl group was prevented. The pH profile showed apparent pK values of 5.2 and 6.4 for the free enzyme and 4.9 and 6.9 for enzyme-substrate complex. The pH dependence of inactivation was consistent with the modification of carboxyl group. The kinetic analysis of the modified enzyme showed similar Km and lower kcat values than the native enzyme indicating that catalytic hydrolysis and not the substrate binding was affected by chemical modification. The chemical modification of xylanase from alkalothermophilic Bacillus revealed the presence of tryptophans in the active site (Dehspande, V, Hinge, J. and Rao, M. (1990) Biochim. Biophys. Acta 1041, 172–177). This finding and present studies demonstrated the experimental evidence for the participation of carboxyl as well as tryptophan groups as essential residues of xylanase from alkalothermophilic Bacillus sp.  相似文献   

12.
Cytokinin oxidase has been partially purified from cultured tobacco tissue. This enzyme converts N6-(delta2-isopentenyl)-adenosine to adenosine. The reaction is inhibited by the two isomers of ribosylzeatin [n6-4-hydroxy-3-methylbut-2-enyl)adenosine]. Trans-ribosylzeatin inhibits the reaction more than the cis-isomer.  相似文献   

13.
14.
We tested a panel of naturally occurring nucleosides for their affinity towards adenosine receptors. Both N 6-(2-isopentenyl)adenosine (IPA) and racemic zeatin riboside were shown to be selective human adenosine A3 receptor (hA3R) ligands with affinities in the high nanomolar range (K i values of 159 and 649 nM, respectively). These values were comparable to the observed K i value of adenosine on hA3R, which was 847 nM in the same radioligand binding assay. IPA also bound with micromolar affinity to the rat A3R. In a functional assay in Chinese hamster ovary cells transfected with hA3R, IPA and zeatin riboside inhibited forskolin-induced cAMP formation at micromolar potencies. The effect of IPA could be blocked by the A3R antagonist VUF5574. Both IPA and reference A3R agonist 2-chloro-N 6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide (Cl-IB-MECA) have known antitumor effects. We demonstrated strong and highly similar antiproliferative effects of IPA and Cl-IB-MECA on human and rat tumor cell lines LNCaP and N1S1. Importantly, the antiproliferative effect of low concentrations of IPA on LNCaP cells could be fully blocked by the selective A3R antagonist MRS1523. At higher concentrations, IPA appeared to inhibit cell growth by an A3R-independent mechanism, as was previously reported for other A3R agonists. We used HPLC to investigate the presence of endogenous IPA in rat muscle tissue, but we could not detect the compound. In conclusion, the antiproliferative effects of the naturally occurring nucleoside IPA are at least in part mediated by the A3R.  相似文献   

15.
Isopentenyl adenosine antibodies useful in the investigations of the "cytokinin" functions of isopentenyl adenosine were purified by affinity chromatography. Using different affinity columns, the antibodies were purified to near complete purity. Analyses of the purified proteins revealed the presence of isopentenyl adenosine binding proteins in normal rabbit serum, which presence supports a suggested role for isopentenyl adenosine and its related compounds in animal cell division in vivo.  相似文献   

16.
17.
Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号