首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 'crowding effect' in avian coccidia, following administration of graded numbers of sporulated oocysts to na?ve hosts, is recognisable by two characteristics. First, increasing doses of oocysts give rise to progressively higher oocyst yields, until a level of infection is reached (the 'maximally producing dose') above which further dose increases result in progressive decreases in oocyst yields. Second, the number of oocysts produced per oocyst administered (the 'reproductive potential') tends to decrease as the oocyst dose is increased. The dose that gives the maximal reproductive potential is the 'crowding threshold' and doses exceeding this are 'crowded doses'. Graded doses of Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox or Eimeria tenella were given to chickens of the same breed, sex and age, reared on the same diet, under identical management. The two characteristics of the crowding effect were demonstrated graphically and, by interpolation, the estimated crowding thresholds were 903, < or =16, 39, < or =14, < or =16, < or =16 or 72 sporulated oocysts, respectively, for the seven Eimeria species enumerated above. This is apparently the first report of definitive experiments to quantify a crowding effect in E. brunetti, E. maxima, E. mitis, E. necatrix and E. praecox. Maximum experimental reproductive potentials were considerably lower than the theoretical reproductive potentials for all seven species. The interaction between availability of host intestinal cells and immunity contributing to the crowding effect is discussed. Standard curves obtained under specified conditions should be used to estimate appropriate infective doses for experimental designs or in vivo production of oocyst stocks. For experiments on effects of chemotherapy or immunisation on oocyst production, an infective dose lower than the crowding threshold should be used. For efficient production of laboratory or factory oocyst stocks, the maximally producing dose (which is greater than the crowding threshold), should be used.  相似文献   

2.
The co-evolution of Eimeria and its host the domestic chicken has resulted in a delicate balance of mutual understanding and respect. This balance has been broken by the complete change of the environment in which the parasite was able to reproduce to such an extent that the host, stressed and weakened by heat, crowding and concurrent infections could not combat the shear numbers of organisms. The use of drugs to control the situation has been shown to only temporarily create relief. Resistance widely developed by the flexible genome of the parasite returned new drugs at a greater speed than they had been developed. Improved hygienic measures, better facility management and good understanding of epidemiology of the parasites spreading and proliferation seem the first and most promising set of tools to control the balance. Reduction of stock density may only provide any relief if this is done at a factor of 10 or higher and this is not a realistic measure in relation to the profit. Free-range chickens are an alternative if only animal welfare is at stake. However, in terms of prevalence of parasitic infections, such as coccidia, helminthes or ectoparasites, chickens do not seem to be better off (Permin et al., 2002). Immunological surveillance and the development of safe, effective and economical vaccines are further refinements that can be used to restore the relationship between parasite and host. Several live vaccines are effective and applied, but certainly have drawbacks in safety and production. New technology such as recombinant vectors together with a better understanding of the cell biology of the parasite from biological and genomic information should provide improved vaccines for the future. The strong genetically determined characteristics involved in the induction and maintenance of a sustainable protective immune response might turn out to be of decisive importance for the success of these strategies. The consequences for the physiology of the parasite remain to be understood.  相似文献   

3.
The role of avian lymphokines as nonspecific immunomodulators of host immunity against the intracellular parasite Eimeria was investigated. Prophylactic treatment of normal chickens with crude cell-free supernatants obtained from JMV-1 culture, concanavalin A (Con A)-stimulated normal spleen cells, or sporozoite-stimulated immune T cells prior to inoculation with E. tenella or E. acervulina conferred significant protection. These crude cell-free culture supernatants also inhibited intracellular development of eimerian parasites in vitro. Avian macrophages pretreated with these supernatant preparations showed inhibitory activity against Eimeria. This inhibitory activity could not be ascribed to anti-Eimeria antibody, complement, or cell-free Marek's disease virus and was therefore considered to be due to immunomodulating lymphokines present in the culture supernatants. These results suggest that JMV-1-transformed T lymphoblastoid cells, immune T lymphocytes, and Con A-stimulated normal spleen cells secrete lymphokines that can enhance host immunity in a nonspecific manner and implicate cell-mediated immunity as a major mechanism of the protective host immune response against eimerian infections.  相似文献   

4.
The site specificity that avian Eimeria sporozoites and, to a more limited degree, other apicomplexan parasites exhibit for invasion in vivo suggests that specific interactions between the sporozoites and the target host cells may mediate the invasion process. Although sporozoite motility and structural and secreted antigens appear to provide the mechanisms for propelling the sporozoite into the host cell,there is a growing body of evidence that the host cell provides characteristics by which the sporozoites recognise and interact with the host cell as a prelude to invasion. Molecules on the surface of cells in the intestinal epithelium, that act as receptor or recognition sites for sporozoite invasion, may be included among these characteristics. The existence of receptor molecules for invasion by apicomplexan parasites was suggested by in vitro studies in which parasite invasion was inhibited in cultured cells that were treated with a variety of substances designed to selectively alter the host cell membrane. These substance included cationic compounds or molecules, enzymes that cleave specific linkages, protease inhibitors, monoclonal antibodies, etc. More specific evidence for the presence of receptors was provided by the binding of parasite antigens to specific host cell surface molecules.Analyses of host cells have implicated 22, 31, and 37 kDa antigens, surface membrane glycoconjugates,conserved epitopes of host cells and sporozoites, etc., but no treatment that perturbs these putative receptors has completely inhibited invasion of the cells by parasites. Regardless of the mechanism,sporozoites of the avian Eimeria also invade the same specific sites in foreign host birds that they invade in the natural host. Thus, site specificity for invasion may be a response to characteristics of the intestine that are shared by a number of hosts rather than to a unique trait of the natural host. Protective immunity elicited against avian Eimeria species is not manifested in a total blockade of parasite invasion. In fact, the effect of immunity on invasion differs according to the eliciting species and depends upon the area of the intestine that is invaded. Immunity produced against caecal species of avian Eimeria, for example Eimeria tenella and Eimeria adenoeides, inhibits subsequent invasion by homologous or heterologous challenge species, regardless of the area of the intestine that the challenge species invade. Conversely, in birds immunised with upper intestinal species, Eimeria acervulina and Eimeria meleagrimitis, invasion by challenge species is not decreased and often is significantly increased.  相似文献   

5.
The importance of the initial follicle pool in fertility in female adult mammals has recently been debated. Utilizing a mathematical model of the dynamics of follicle progression (primordial to primary to secondary), we examined whether the initial follicle pool is sufficient for adult fertility through reproductive senescence in CD1 mice. Follicles in each stage were counted from postnatal day 6 through 12 months and data were fit to a series of first-order differential equations representing two mechanisms: an initial pool of primordial follicles as the only follicle source (fixed pool model), or an initial primordial follicle pool supplemented by germline stem cells (stem cell model). The fixed pool model fit the experimental data, accurately representing the maximum observed primary follicle number reached by 4-6 months of age. Although no germline stem cells could be identified by SSEA-1 immunostaining, the stem cell model was tested using a range of de novo primordial follicle production rates. The stem cell model failed to describe the observed decreases in follicles over time and did not parallel the accumulation and subsequent reduction in primary follicles during the early fertile lifespan of the mouse. Our results agree with established dogma that the initial endowment of ovarian follicles is not supplemented by an appreciable number of stem cells; rather, it is sufficient to ensure the fertility needs of the adult mouse.  相似文献   

6.
Steady-state levels of HIV-1 viraemia in the plasma vary more than a 1,000-fold between HIV-positive patients and are thought to be influenced by several different host and viral factors such as host target cell availability, host anti-HIV immune response and the virulence of the virus. Previous mathematical models have taken the form of classical ecological food-chain models and are unable to account for this multifactorial nature of the disease. These models suggest that the steady-state viral load (i.e. the set-point) is determined by immune response parameters only. We have devised a generalized consensus model in which the conventional parameters are replaced by so-called 'process functions'. This very general approach yields results that are insensitive to the precise form of the mathematical model. Here we applied the approach to HIV-1 infections by estimating the steady-state values of several process functions from published patient data. Importantly, these estimates are generic because they are independent of the precise form of the underlying processes. We recorded the variation in the estimated steady-state values of the process functions in a group of HIV-1 patients. We developed a novel model by providing explicit expressions for the process functions having the highest patient-to-patient variation in their estimated values. Small variations from patient to patient for several parameters of the new model collectively accounted for the large variations observed in the steady-state viral burden. The novel model remains in full agreement with previous models and data.  相似文献   

7.
CD8 T cell responses to viral infections in sequence   总被引:2,自引:0,他引:2  
Our current understanding of virus-specific T cell responses has been shaped by model systems with mice, where naive animals are infected with a single viral pathogen. Paradigms derived from such models, however, may not always be applicable to a natural setting, where a host is exposed to numerous pathogens over its lifetime. Accumulating data in animal models and with some human diseases indicate that a host's prior history of infections can impact the specificity of future CD8 T cell responses, even to unrelated viruses. This can have both beneficial and detrimental consequences for the host, including altered clearance of virus, distinct forms of immunopathology, and substantial changes in the pool of memory T cells. Here we will describe the characteristics of CD8 T cells and the dynamics of their response to heterologous viral infections in sequence.  相似文献   

8.
ABSTRACT. Ultrastructural studies on Eimeria (syn. Epieimeria ) anguillae (Apicomplexa), parasite of the digestive tract of the eel, have shown that the development of this parasite takes place completely within the host cell. Merogony and gamogony are intracellular but in the epicytoplasmic position. Sporogony is also located within the epithelial cells, which agrees with assignment of this coccidian in the family Eimeriidae. However, depending on the intensity of infection and the physiopathological reaction of the host, the gamont may behave in two ways. 1) In massive infections, gamogony stages cause a genuine destruction of intestinal epithelium. Large numbers of gamonts form nodules and parts of the seriously destroyed epithelium peel off and are released into the lumen of the gut and quickly discharged into the outer environment. This discharged epithelium envelops cells containing immature oocysts that then sporulate outside the host. 2) In light infections, the host cells, which are necrotic due to the presence of a zygote, are pushed between the surrounding intact cells towards the base of the epithelium. Closely above its basal lamella, the oocyst then undergoes sporulation. These results show no taxonomically important biological features (e.g. special mode of implantation to the host cell or active movement of the zygote). Because the morphological characteristics of Epieimeria do not differ significantly from Eimeria , we propose to suppress the genus Epieimeria Dyková and Lom, 1981, and relegate its species into the genus Eimeria .  相似文献   

9.
The numbers of ovarian follicles present in the reserve pool of non-growing ('primordial') stages at the commencement of adult life in 19 species varied allometrically with both body weight ( M , in kg) and with maximum life expectation (L, in years), the mathematical expressions being 27700 M 0.47 and 820 M 1.58, respectively. These allometric relationships, which could not be accounted for by differences in reproductive behaviour patterns or ovulation rates, indicate that species differences in the size of the follicular store, perhaps accompanied by more parsimonious utilization, could be a life strategy which guarantees fecundity throughout most of the lifespan. The number of follicles in humans at menarcheal age is commensurate with body size, and follicular deficiency at menopause in mid-life may have therefore arisen adventitiously with lifespan extension.  相似文献   

10.
The population dynamics of Heligmosomoides polygyrus were studied in outbred male MF1 mice subject either to primary or repeated experimental infection. Little variability in susceptibility was observed between mice, but heterogeneity increased with both duration and intensity of primary infection; this result indicates that there are differences in parasite survival between hosts. The rate of parasite-induced host mortality was 4 X 10(-4) per parasite per host per parasite lifespan. The mortality rates of male and female larvae during their development in the intestinal wall were estimated as 0.033 and 0.021 per parasite per day respectively, and estimates of the expected lifespans of the adult male and female parasites in primary infection of 11.22 and 9.92 weeks were obtained. Approximately 40% of female worms were observed in copula at any one time, although this proportion was significantly depressed in hosts harbouring fewer than 50 parasites and during the first four weeks of infection. Parasite fecundity was markedly age-dependent; each female worm produced approximately 31,000 eggs during its lifespan. No density dependence in either worm survival or fecundity in primary infection was apparent. The only detectable effect of worm density was in association with spatial distribution in the intestine; high levels of infection were associated with a posterior shift in the location of a proportion of the parasite population. Characterization of the dynamics of primary infection allowed predictions to be made about the expected dynamics of repeated infection. The comparison of predicted results and observed data revealed unequivocal epidemiological evidence for the density-dependent regulation of parasite population growth during repeated infection, affecting both parasite survival and parasite fecundity. The results also demonstrated the existence of two types of host individual in which the dynamics of repeated infection were markedly different. It is concluded that immunological differences between mice (possibly under genetic control) may be responsible for the observed effects; approximately 25% of MF1 mice seem unable to generate any protective immunity against H. polygyrus, whereas 75% become almost completely refractory to reinfection. This experimental system could be used for quantitative investigation of the impact of acquired immunity and genetic heterogeneity on helminth population dynamics. Both are of obvious relevance with respect to the control of infections of medical and veterinary significance.  相似文献   

11.
Inoculation of northern bobwhite quail ( Colinus virginianus ) with low doses of Eimeria lettyae oocysts stimulates a protective immune response, suggesting immunization may be an option for controlling coccidiosis. However, the oocyst production of inoculated birds could be considerable, leading to subsequent outbreaks. To determine the oocyst production following inoculation with E. lettyae, we orally infected 12-wk-old bobwhites with 100, 1,000, or 10,000 sporulated oocysts. Fecal materials were collected on days 5-9 post-inoculation, and total oocyst production was counted in McMaster chambers. Oocyst production/bird was 49.75, 89.5, and 436 × 10(6) for 100, 1,000, or 10,000 oocysts administered, respectively. Estimated oocysts produced/oocyst administered was 49.75, 8.95, and 4.36 × 10(4) for 100, 1,000, or 10,000 oocysts administered, respectively. These findings not only illustrate the crowding effect of larger oocyst inocula but also illustrate the fecundity of E. lettyae at low doses. This suggests that successful immunization of bobwhites against coccidiosis with live vaccines might require attenuated strains with reduced reproductive potential.  相似文献   

12.
We created agent-based models that visually simulate conditions of chronic viral infections using two software. The results from two models were consistent, when they have same parameters during the actual simulation. The simulation results comprise a transient phase and an equilibrium phase, and unlike the mathematical model, virus count transit smoothly to the equilibrium phase without overshooting which correlates with actual biology in vivo of certain viruses. We investigated the effects caused by varying all the parameters included in concept; increasing virus lifespan, uninfected cell lifespan, uninfected cell regeneration rate, virus production count from infected cells, and infection rate had positive effects to the virus count during the equilibrium period, whereas increasing the latent period, the lifespan-shortening ratio for infected cells, and the cell cycle speed had negative effects. Virus count at the start did not influence the equilibrium conditions, but it influenced the infection development rate. The space size had no intrinsic effect on the equilibrium period, but virus count maximized when the virus moving speed was twice the space size. These agent-based simulation models reproducibly provide a visual representation of the disease, and enable a simulation that encompasses parameters those are difficult to account for in a mathematical model.  相似文献   

13.
Partridge L 《Aging cell》2007,6(5):595-598
The invertebrate model organisms continue to be engines of discovery in aging research. Recent work with Drosophila stem cells has thrown light on their human equivalents, and on the role of stem cells and their niches in the decline in fecundity with age. Inspired by observations of aging in bacteria and yeast, a new theoretical study has revealed evolutionary forces that could favour asymmetry in the distribution of damaged cell constituents at division, and hence pave the way for the evolution of aging and selective maintenance of integrity of the germ line. Mechanisms of nutrient sensing and cell signalling in the response of lifespan to dietary restriction have been elucidated. Powerful invertebrate models of human aging-related disease have been produced, and used to start to understand how the aging process acts as a risk factor for disease. In the near future, studies of invertebrate aging are likely to move away from an exclusive reliance on genetic manipulation towards a more biochemical and physiological understanding of these systems.  相似文献   

14.
During the course of evolution, protozoan parasites have developed strategies to subvert the immune response of their host in order to multiply, reproduce and survive. One of these inherited strategies is their capacity to modulate the host cell transductional mechanisms in their favor. Alteration of host cells Ca(2-) homeostasis following interaction and/or invasion by protozoan parasites such as Leishmania donovani, Trypanosoma cruzi, Plasmodium falciparum or Entamoeba histolytica has been reported. There is direct evidence that such disturbances are responsible for pathogenesis observed during parasitic infections. This homeostatic imbalance of Ca(2+) in the host cell is an early inducible event whose underlying mechanisms needs further investigation, as discussed here by Martin Olivier.  相似文献   

15.
Cytokines, free radicals and resistance to Eimeria   总被引:1,自引:0,他引:1  
The cytokine, gamma-interferon (IFN-gamma), which is produced by CD4(+) T cells, plays a crucial role in host resistance to Eimeria infections. Karen Ovington and Nick Smith propose that free oxygen radical generation by leukocytes in response to infection with Eimeria is the result of activation by IFN-gamma. The functional role of free oxygen radicals is unclear but these highly reactive radicals are produced by the leukocytes that infiltrate the intestine in large numbers during infection, and the parasites,enterocytes and cells of the immune system may all be vulnerable to oxidative damage. Gamma-interferon also appears to induce the enterocytes inhabited by Eimeria to turn against the parasite. The authors draw from literature documenting similar effects on other protozoa, especially Leishmania and Plasmodium, and speculate that reactive nitrogen intermediates produced by enterocytes have a functional role in resistance to Eimeria.  相似文献   

16.
Selection is expected to optimize reproductive investment resulting in characteristic trade‐offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life‐history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life‐history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life‐history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from < 2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. > 200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life‐history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade‐off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between fecundity and glochidial size for the remaining 61 species in the dataset. In contrast to fecundity, RE showed evidence of a strong trade‐off with lifespan, which was negatively related to RE. The raw number of glochidia produced may be determined primarily by physical and energetic constraints rather than selection for optimal output based on differences in host strategies or other traits. By integrating traits such as body size, glochidial size, and fecundity, RE appears more useful in defining mussel life‐history strategies. Combined with trade‐offs between other traits such as growth, lifespan, and age at maturity, differences in RE among species depict a broad continuum of divergent strategies ranging from strongly r‐selected species (e.g. tribe Anodontini and some Lampsilini) to K‐selected species (e.g. tribes Pleurobemini and Quadrulini; family Margaritiferidae). Future studies of reproductive effort in an environmental and life‐history context will be useful for understanding the explosive radiation of this group of animals in North America and will aid in the development of effective conservation strategies.  相似文献   

17.
NK cells are innate lymphocytes that mediate early host defense against viruses, such as cytomegalovirus. IL-15 is upregulated during viral infections and drives the expansion of NK cells. However, the influence of IL-15 on murine NK cell division and death rates has not been quantitatively studied. Therefore, we developed a series of two-compartment (representing quiescent and dividing NK cell subpopulations) mathematical models, incorporating different assumptions about the kinetic parameters regulating NK cell expansion. Using experimentally derived division and death rates, we tested each model's assumptions by comparing predictions of NK cell numbers with independent experimental results and demonstrated that the kinetic parameters are distinct for nondividing and dividing NK cell subpopulations. IL-15 influenced NK cell expansion by modulating recruitment and division rates to a greater extent than death rates. The observed time delay to first division could be accounted for by differences in the kinetic parameters of nondividing and dividing subsets of NK cells. Although the duration of the time delay to first division was not significantly influenced by IL-15, the recruitment of nondividing NK cells into the replicating subpopulation increased with greater IL-15 concentrations. Our model quantitatively predicted changes in NK cell accumulation when IL-15 stimulation was reduced, demonstrating that NK cell divisional commitment was interrupted when cytokine stimulation was removed. In summary, this quantitative analysis reveals novel insights into the in vitro regulation of NK cell proliferation and provides a foundation for modeling in vivo NK cell responses to viral infections.  相似文献   

18.
Response of endophytic fruit fly species (Tephritidae) to larval crowding is a form of scramble competition that may affect important life history traits of adults, such as survival and reproduction. Recent empirical evidence demonstrates large differences in adult life history traits, especially longevity, among Mediterranean fruit fly (Ceratitis capitata; "medfly") biotypes obtained from different regions of the world. However, whether the evolution of long lifespan is associated with response to stress induced by larval crowding has not been fully elucidated. We investigated, under constant laboratory conditions, the response of a short‐ and a long‐lived medfly biotypes to stress induced by larval crowding. Survival and development of larvae and pupae and the size of resulting pupae were recorded. The lifespan and age‐specific egg production patterns of the obtained adults were recorded. Our findings reveal that increased larval density reduced immature survival (larvae and pupae) in the short‐lived biotype but had rather neutral effects on the longed‐lived one. Only larvae of the long‐lived biotype were capable of prolonging their developmental duration under the highest crowding regime to successfully pupate and emerge as adults. Response of emerging adults to larvae crowding conditions was similar in the two medfly biotypes. Those individuals emerging from high larval density regimes had reduced longevity and fecundity. Long‐lived biotype individuals, however, appeared to suffer a higher cost in longevity compared with the short‐lived one. The importance of our findings to understand the evolution of long lifespan is discussed.  相似文献   

19.
Research in host-parasite evolutionary ecology has demonstrated that environmental variation plays a large role in mediating the outcome of parasite infection. For example, crowding or low food availability can reduce host condition and make them more vulnerable to parasite infection. This observation that poor-condition hosts often suffer more from parasite infection compared to healthy hosts has led to the assumption that parasite productivity is higher in poor-condition hosts. However, the ubiquity of this negative relationship between host condition and parasite fitness is unknown. Moreover, examining the effect of environmental variation on parasite fitness has been largely overlooked in the host-parasite literature. Here we investigate the relationship between parasite fitness and host condition by using a laboratory experiment with the cabbage looper Trichoplusia ni and its viral pathogen, AcMNPV, and by surveying published host-parasite literature. Our experiments demonstrated that virus productivity was positively correlated with host food availability and the literature survey revealed both positive and negative relationships between host condition and parasite fitness. Together these data demonstrate that contrary to previous assumptions, parasite fitness can be positively or negatively correlated with host fitness. We discuss the significance of these findings for host-parasite population biology.  相似文献   

20.
Environmental manipulations have consistently demonstrated a cost of reproduction in the capital-breeding seed beetle, Callosobruchus maculatus, as females deprived of seeds or mates lay fewer eggs and thereby increase their longevity. Yet fecundity and longevity tend to be positively correlated within populations, perhaps as a consequence of individual differences in resource acquisition. We conducted a split-brood experiment that combined a manipulation of seed availability (seeds present or absent) with a quantitative-genetic analysis of fecundity and lifespan in each environment. Each trait was significantly heritable in each environment. Seed availability not only altered mean fecundity and longevity between environments, but also modified how the traits were correlated within environments. The signs of both the phenotypic and genetic correlations switched from positive when seeds were present to negative when seeds were absent. This reversal persisted even after the effect of body mass (a potential indicator of resource acquisition) was statistically controlled. Cross-environment genetic correlations were positive but significantly less than one for each trait. We suggest that the reversal of the fecundity-longevity relationship depends on a shift in the relative importance of resource-acquisition and resource-allocation loci between environments. In particular, a cost of reproduction may be apparent at the individual level only when seeds are scarce or absent because differences in reproductive effort become large enough to overwhelm differences in resource acquisition. Despite their common dependence on resources acquired during larval stages, fecundity and lifespan in C. maculatus do not appear to be tightly coupled in a physiological or genetic sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号