首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Docosahexaenoic acid (DHA) plays an important role in visual function but has a highly oxidation-prone chemical structure. Therefore, we investigated how dietary DHA affects the generation of lipid peroxides in rat retina under oxidative stress in diabetes with/without vitamin E (VE) deficiency. Streptozotocin-induced (50 mg i.p./kg B.W.) diabetic Sprague-Dawley (SD) rats were assigned to four groups: (i) control/VE(+), (ii) DHA/VE(+), (iii) control/VE( - ) and (iv) DHA/VE( - ), and raised for 28 days. We then measured lipid peroxide levels in the retina, serum and liver. With a normal intake of VE, dietary DHA increased only the retinal level of thiobarbituric acid-reactive substances (TBARS) slightly. In contrast, in rats with VE deficiency, dietary DHA increased serum and liver lipid peroxide levels but not in the retina. These results suggest that dietary DHA does not necessarily promote lipid peroxidation in the retina even under high oxidative stress.  相似文献   

2.
This study determined the sensitivity of heart and brain arachidonic acid (ARA) and docosahexaenoic acid (DHA) to the dietary ARA level in a dose–response design with constant, high DHA in neonatal piglets. On day 3 of age, pigs were assigned to 1 of 6 dietary formulas varying in ARA/DHA as follows (% fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3–D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. At necropsy (day 28) higher levels of dietary ARA were associated with increased heart and liver ARA, while brain ARA remained unaffected. Dietary ARA had no effect on tissue DHA accretion. Heart was particularly sensitive, with pigs in the intermediate groups having different ARA (A2, 18.6±0.7%; A3, 19.4±1.0%) and a 0.17% increase in dietary ARA resulted in a 0.84% increase in heart ARA. Further investigations are warranted to determine the clinical significance of heart ARA status in developing neonates.  相似文献   

3.
A marine yellowish picoplankton, strain PP301, which was newly isolated from the surface seawater of the western Pacific Ocean was an eminent producer of polyunsaturated fatty acids. Its fatty acids were mostly shared by the shortest saturated form (14:0, 20–30%) and polyunsaturated forms (20:4, EPA and DHA) which accounted for about 50% of the total fatty acids. The amount of intermediate forms in 16 and 18 carbon chains were very little. This composition was consistently observed irrespective of the growth temperatures (15–35 °C).  相似文献   

4.
Recent studies have shown that polyunsaturated fatty acids (PUFA) regulated the functions of membrane receptors in T cells and suppressed T cell-mediated immune responses. But the molecular mechanisms of immune regulation are not yet elucidated. Lipid rafts are plasma membrane microdomains, in which many receptors localized. The purpose of this study was to investigate the effect of DHA on IL-2R signaling pathway in lipid rafts. We isolated lipid rafts by discontinuous sucrose density gradient ultracentrifugation, and found that DHA could change the composition of lipid rafts and alter the distribution of key molecules of IL-2R signaling pathway, which transferred from lipid rafts to detergent-soluble membrane fractions. These results revealed that DHA treatment increased the proportion of polyunsaturated fatty acids especially n−3 polyunsaturated fatty acids in lipid rafts and changed the lipid environment of membrane microdomains in T cells. Compared with controls, DHA changed the localization of IL-2R, STAT5a and STAT5b in lipid rafts and suppressed the expression of JAK1, JAK3 and tyrosine phosphotyrosine in soluble membrane fractions. Summarily, this study concluded the effects of DHA on IL-2R signaling pathway in lipid rafts and explained the regulation of PUFAs in T cell-mediated immune responses.  相似文献   

5.
This study was conducted to determine whether provision of preformed dietary docosapentaenoic acid (DPAn-6) can replace docosahexaenoic acid (DHA) for brain function as assessed by spatial task performance. A newly modified artificial rearing method was employed to generate n-3 fatty acid-deficient rats. Newborn pups were separated from their mothers at 2 days of age and given artificial rat milk containing linoleic acid (LA), or LA supplemented with 1% DHA (DHA), 1% DPAn-6 (DPA) or 1% DHA plus 0.4% DPAn-6 (DHA/DPA). The animals were then weaned onto similar pelleted diets. At adulthood, behavioural tasks were administered and then the brains were collected for fatty acid analysis. The LA and DPA groups showed a lower (63-65%) brain DHA than the dam-reared, DHA and DHA/DPA groups and this loss was largely compensated for by an increase in brain DPAn-6. The brain fatty acid composition in the DPA group was the same as that in the LA group at adulthood. In the Morris water maze, the LA and DPA groups exhibited a longer escape latency than the dam-reared and DHA groups and had a defect in spatial retention. In conclusion, DPAn-6 could not replace DHA for brain function, indicating a highly specific structural requirement for DHA.  相似文献   

6.
In 56 samples of freshwater fish, most were low in fat, ≤ 5% of dry weight (D.W.), and the sum of all fatty acids (ΣFA) was about 2% of D.W. Trout, whitefish, and grayling had the highest content of the long-chained FA. of ω3 type, EPA and DHA (1·7–2·6% of D.W.). Two large, low-fat pikes with ΣFA of about12–3% of D.W. and a medium-fat whitefish had the highest ω3/ω6 ratios, 8–9, whereas the fattiest fishes, eels from two lakes and the Baltic (ΣFA =17–26% of D.W.) had lower ω3/ω6 ratios, 1·1–1·8 (ω3 and ω6 FA are two important series of FA). The results indicate that ΣA controls the content of saturated FA (SAFA) and monounsaturated FA (MUFA), whereas the polyunsaturated FA (PUFA) was independent of ΣFA after a break point of about 10%ΣFA of D.W. The P/S ratio (PUFA/SAFA) and the PUFA/ΣFA ratio decreased with increased ΣFA, whereas the ω3/ω6 ratio showed no clear correlation to ΣFA. The difference in fatty acid patterns lay between low-fat and high-fat fishes, rather than between marine and freshwater fishes. The variation, both within and between species of the separate FA is small in fish with similar ΣFA content. Also, low-fat and medium-fat fishes tend to be more dietarily favourable than high-fat fishes, when considering the latest criteria for high nutritional value to humans. Abbreviations used in the text: FA, fatty acids; ΣFA, sum of all FA; AA, arachidonic acid (20 : 4ω6); EPA, eicosapentaenoic acid (20 : 5ω3); DHA, docosahexaenoic acid (22 : 6ω3); SAFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; D.W., dry weight; F.W. fresh weight; CV, coefficient of variation; ω3 FA, series of PUFA with the first double bond located at carbon number 3; ω6 FA, series of PUFA with the first double bond located at carbon number 6. The fatty acids are described by three numbers, x:ywz, where x=number of carbon atoms, y=number of double bonds, and z=position of the first double bond counted from the methyl end of the molecule.  相似文献   

7.
Microbial activity within the environment can have distinct geochemicaleffects, and so changes in a microbial community structure can result ingeochemical change. We examined seasonal changes in both the microbialcommunityand the geochemistry of an inter-tidal salt marsh in north-west England tocharacterise biogeochemical processes occurring at this site.Phospholipid fatty acid (PLFA) analysis of sediment samples collected atmonthly intervals was used to measure seasonal changes in microbial biomass andcommunity structure. The PLFA data were analysed using multivariate techniques(Ward's method and the Mahalanobis distance metric), and we show that the useofthe Mahalanobis distance metric improves the statistical analysis by providingdetailed information on the reasons samples cluster together and identifyingthedistinguishing features between the separate clusters. Five clusters of likesamples were defined, showing differences in the community structure over thecourse of a year.At all times, the microbial community was dominated by PLFA associated withaerobic bacteria, but this was most pronounced in summer (August). Theabundanceof branched fatty acids, a measure of the biomass of anaerobes, started toincrease later in the year than did those associated with aerobes and thefungalbiomarker 18:26 showed a brief late-summer peak.The salt marsh remained mildly oxic throughout the year despite the increase inmicrobial respiration, suggested by the large increases in the abundance ofPLFA, in the warmer months. The conditions therefore remained most favourablefor aerobic species throughout the year, explaining their continual dominanceatthis site. However, as the abundance of PLFA synthesised by anaerobesincreased,increases in dissolved Mn concentrations were observed, which we suggest weredue to anaerobic respiration of Mn(IV) to Mn(II). Overall, the geochemicalconditions were consistent with the microbial community structure and changeswithin it.  相似文献   

8.
Phospholipids and their acyl group composition are important in providing the proper membrane environment for membrane protein structure and function. In particular, the highly unsaturated phospholipids in synaptic plasma membranes in the CNS are known to play an important role in modulating receptor function and neurotransmitter release processes. Apolipoprotein E (apoE) is a major apolipoprotein in the CNS, mediating the transport of cholesterol, phospholipids and their fatty acids, particularly in reparative mechanisms during neuronal injury. This study was performed to determine whether deficiency in the apoE gene contributes to an alteration of the phospholipids in synaptic plasma membranes. Phospholipid molecular species were identified and quantitated by HPLC/electrospray ionization-mass spectrometry. Analysis of the different phospholipid classes in membranes of apoE-deficient and C57BL/6 J mice indicated no obvious differences in the distribution of different phospholipid classes but substantial differences in composition of phospholipid molecular species. Of special interest was the prevalence of phospholipids (phosphatidylcholine, diacyl-phosphatidylethanolamine, and phosphatidylserine) with 22:6n-3 in both the sn-1 and sn-2 positions of SPM and these phospholipid species were significantly higher in apoE-deficient mice as compared to control mice. Since polyunsaturated fatty acids in neurons are mainly supplied by astrocytes, these results revealed a new role for apoE in regulating polyunsaturated phospholipid molecular species in neuronal membranes.  相似文献   

9.
Docosahexaenoic acid (22:6n-3, DHA) is highly enriched in neuronal membranes and is considered to be essential for proper brain function. We have previously demonstrated in Neuro 2A cells that DHA as a membrane component protects cells from apoptotic death induced by serum deprivation (Kim et al. 2000). In the present study we demonstrate that staurosporine (ST) induces apoptosis in Neuro 2A cells and DHA enrichment prior to the ST treatment significantly inhibits the apoptotic cell death, as evidenced by the reduction of caspase-3 activity, cleavage of pro-caspase-3 to active caspase-3, DNA strand-breaking and laddering. Enrichment of cells with other fatty acids such as oleic and arachidonic acids did not exert such an effect, indicating that the antiapoptotic effect was specific to DHA enrichment. Among the several protein kinase inhibitors, only phosphatidylinositol 3-kinase (PI3-K) inhibitors, wortmanin, and LY-294002 abolished the protective effect of DHA in ST-induced apoptosis. Concurrently, ST-treatment significantly decreased the phosphorylation status of Akt at Ser-473 and Thr-308 as well as Akt activity, and this reduction was partially prevented by DHA enrichment. The extent of the antiapoptotic effect of DHA correlated with a time-dependent increase in the phosphatidylserine (PS) content upon DHA enrichment. When cells were enriched with DHA in serine-free medium, the PS increase diminished and the DHA effect on caspase-3 activation as well as Akt phosphorylation in ST-induced apoptosis was no longer apparent, suggesting that DHA's role in accumulating membrane PS is an important component for the observed protection. In summary, DHA enrichment uniquely protects ST-induced apoptosis in a PS- and PI3-K-dependent manner. From these data, we suggest that the antiapoptotic effect of DHA is mediated at least in part through the PI3-K/Akt pathway, facilitated by DHA-induced PS accumulation.  相似文献   

10.
A cluster of genes involved in fatty acid biosynthesis (fab) was isolated from docosahexaenoic acid (DHA)-producing Vibrio marinus strain MP-1. This fab gene cluster included five genes highly homologous to the Escherichia coli counterparts, and their order in the cluster was the same with that of the E. coli fab gene cluster except that the latter included the additional fabH gene. These fab genes should be involved in early steps of DHA biosynthesis in V. marinus strain MP-1.  相似文献   

11.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks.  相似文献   

12.
13.
A prokaryotic expression vector containing the rec A promoter and a translational enhancer element from the gene 10 leader of bacteriophage T7 was used to direct efficient synthesis of rat intestinal fatty acid binding protein (I-FABP) in E. coli. Expression of I-FABP in E. coli has no apparent, deleterious effects on the organism. High levels of expression of I-FABP mRNA in supE+ strains of E. coli, such as JM101, is associated with suppression of termination at its UGA stop codon. This can be eliminated by using a sup-Estrain as MG1655 and by site-directed mutagenesis of the cDNA to create an in frame UAA stop codon. E. coli-derived rat I-FABP lacks its initiator Met residues. It has been crystallized with and without bound palmitate. High resolution x-ray crystallographic studies of the 131 residue apo- and holo-proteins have revealed the following. I-FABP contains 10 anti-parallel -strands organized into two orthogonally situated -sheets. The overall conformation of the protein resembles that of a clam — hence the term -clam. The bound ligand is located in the interior of the protein. Its carboxylate group forms part of a unique five member hydrogen bonding network consisting of two ordered solvent molecules as well as the side chains of Arg106 and Gln115. The hydrocarbon chain of the bound C16:0 fatty acid has a distinctive bent conformation with a slight left-handed helical twist. This conformation is maintained by interactions with the side chains of a number of hydrophobic and aromatic amino acids. Apo-I-FABP has a similar overall conformation to holo-I-FABP indicating that the -clam structure is stable even without bound ligand. The space occupied by bound ligand in the core of the holo-protein is occupied by additional ordered solvent molecules in the apo-protein. Differences in the side chain orientations pf several residues located over a potential opening to the cores of the apo- and holo-proteins suggest that solvent may play an important role in the binding mechanism. Comparison of the C coordinates of apo- and holo-I-FABP with those of other proteins indicates it is a member of a superfamily that currently includes (i) 10 mammalian intracellular lipid binding proteins, (ii) the photoactive yellow protein from the purple photoautotrophic bacterium Ectothiorhodospira halophila and (iii) a group of extracellular lipid binding proteins from a diverse number of phyla that have a common barrel consisting of 8 anti-parallel -strands stacked in two nearly orthogonal sheets. In summary, E. coli-derived I-FABP not only represents a useful model for assessing the atomic details of fatty acid-protein interactions and the mechanisms which regulate acquisition and release of this type of ligand, but also structure/function relationships in other superfamily members.Abbreviations I-FABP Intestinal Fatty Acid Binding Protein - r.m.s root mean square  相似文献   

14.
Larval sea bass Dicentrarchus labrax of 27 days old were reared on Artemia enriched with Super Selco©, Tuna Orbital Oil or Yeast. The first diet is commonly used in mariculture for larval rearing, the second diet was designed to deliver an optimal docosahexaenoic acid (22: 6n-3) to eicosapentaenoic acid (20: 5n-3) ratio, and the third diet was deficient in docosahexaenoic acid (22: 6n-3). The eyes of these larvae were analysed after 28 days and the molecular species of the three main phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) determined. Eyes from larvae fed Artemia enriched with yeast showed large decreases in molecular species containing 22: 6n-3 compared to those supplemented with tuna orbital oil, most notably in 16: 0/22: 6n-3 PC which fell from 10.6 to 0.4%, in 22: 6n-3/22: 6n-3 and 18: 1/22: 6n-3 PE which fell from 29.6 to 0.3% and from 10.8 to 1.1% respectively, and in 22: 6n-3/22: 6n-3 PS which fell from 34.3 to 1.7%. Molecular species containing all other fatty acids, and especially 20: 5n-3, were elevated in eyes from the yeast-supplemented fish. In larvae fed Artemia enriched with Super Selco, amounts of eye 22: 6n-3/22: 6n-3 phospholipid were slightly lower in all three phospholipid classes compared to eyes from the tuna orbital oil-supplemented larvae. There was also a trend of decreased saturated fatty acid/22: 6n-3 and monounsaturated fatty acid/22: 6n-3 molecular species in all classes from the Super Selco-supplemented fish, the deficits being made up with molecular species containing 20: 5n-3 and 22: 5n-3. These results are discussed in relation to larval viability with particular respect to visual function.  相似文献   

15.
The microbial community structure of two biofilters used for the oxidation of methane and organic trace gases generated in landfills was analysed by phospholipid fatty acid composition. Community structure varied with biofilter depth, reflecting varying conditions of substrate supply as well as of organic carbon content, nutrient status and osmotic stress determined by the different materials used for the individual biofilter layers. Both biofilters were dominated by type II methanotrophs. In the biofilter charged with landfill gas containing significant amounts of trace organics, fatty acid 18:1omega7c constituted 87% of the methanotrophic PLFA, while the recognised signature fatty acids 16:1omega8 and 18:1omega8, which were well represented in the other biofilter, were entirely absent. This indicates the development of a highly specific methanotrophic population, presumably as a result of the adaption to continuous organic trace gas exposure.  相似文献   

16.
Ultraviolet A photosensitivity is a debilitating symptom associated with the metabolic disorder Smith-Lemli-Opitz syndrome (SLOS). SLOS is a manifestation of the deficiency of 7-dehydrocholesterol reductase, an enzyme involved in the cholesterol biosynthesis. As a result several abnormal intermediary compounds are formed among which Cholesta 5, 7, 9(11)-trien-3beta-ol is the most likely cause of photosensitivity. The effect of various drugs acting on cholesterol biosynthetic pathway on SLOS is not clear as clinical trials are not available for this rare disorder. A Flux Balance Analysis (FBA) has been carried out using the software CellNetAnalyzer or FluxAnalyzer to gain insight into the probable effects of various drugs acting on cholesterol biosynthetic pathway on photosensitivity in SLOS. The model consisted of 44 metabolites and 40 reactions. The formation flux of Cholesta 5, 7, 9(11)-trien-3beta-ol increased in SLOS and remained unchanged on simulation of the effect of miconazole and SR31747. However zaragozic acid can potentially reduce the flux through the entire pathway. FBA predicts zaragozic acid along with cholesterol supplementation as an effective treatment for photosensitivity in SLOS.  相似文献   

17.
To investigate involvement of the central nervous system in the ontogeny of behaviour, diets of differing quality were used to rear yellowtail Seriola quinqueradiata larvae and juveniles. Artemia nauplii enriched with oleic acid (OA), eicosapentaenoic acid (EPA), or two different concentration levels of docosahexaenoic acid (DHA) were fed to yellowtail larvae (LT 7 mm; 13 days old) for 12 days, and their behavioural development was analysed together with growth, survival, activity and fatty acid composition. Yellowtail fed with DHA–enriched Artemia showed mutual attraction behaviour at 11 mm LT, while those fed with OA– or EPA–enriched Artemia did not show this behaviour at the same size. While fish in the OA group showed poor growth, survival and activity index, fish in the EPA group were similar to the two DHA groups. In addition, most fish tested, including the OA group, showed clear optokinetic responses. Fatty acid composition of the diet was reflected in that of the fish body. Therefore, dietary DHA in the larval stage is considered to be essential for the development of schooling behaviour in the yellowtail.  相似文献   

18.
19.
This study aimed to investigate the effects of docosahexaenoic acid (DHA) on the oxidative stress that occurs in an experimental mouse model of Parkinson’s disease (PD). An experimental model of PD was created by four intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (4 × 20 mg/kg, at 12 h intervals). Docosahexaenoic acid was given daily by gavage for 4 weeks (36 mg/kg/day). The motor activity of the mice was evaluated via the pole test, and the dopaminergic lesion was determined by immunohistochemical analysis for tyrosine hydroxylase (TH)-immunopositive cells. The activity of antioxidant enzymes in the brain were determined by spectrophotometric assays and the concentration of thiobarbituric acid-reactive substances (TBARS) were measured as an index of oxidative damage. The number of apoptotic dopaminergic cells significantly increased in MPTP-treated mice compared to controls. Although DHA significantly diminished the number of cell deaths in MPTP-treated mice, it did not improve the decreased motor activity observed in the experimental PD model. Docosahexaenoic acid significantly diminished the amount of cell death in the MPTP + DHA group as compared to the MPTP group. TBARS levels in the brain were significantly increased following MPTP treatment. Glutathione peroxidase (GPx) and catalase (CAT) activities of brain were unaltered in all groups. The activity of brain superoxide dismutase (SOD) was decreased in the MPTP-treated group compared to the control group, but DHA treatment did not have an effect on SOD activity in the MPTP + DHA group. Our current data show that DHA treatment exerts neuroprotective actions on an experimental mouse model of PD. There was a decrease tendency in brain lipid oxidation of MPTP mice but it did not significantly.  相似文献   

20.
A key factor limiting the study of the origin and metabolism of brain fatty acids is the lack of cost-efficient methods available to trace fatty acids. Here, through the application of compound-specific isotope analysis (CSIA), a novel, cost-efficient method, we successfully differentiated between brain DHA originating directly from dietary omega (n)?3 polyunsaturated fatty acids (PUFA), and brain DHA biochemically synthesized to determine the origin of brain DHA in fat-1 mice. Fat-1 mice and their wild-type littermates were either weaned onto n?6 PUFA rich, n?3 PUFA deficient diets or diets rich in both n?3 and n?6 PUFA. Isotopic analysis of fatty acid methyl esters from brain and liver tissue was conducted via gas chromatography- isotope ratio mass spectrometry. Our data demonstrates that in the presence of n?3 and n?6 PUFA, fat-1 mice obtain their brain DHA solely from n?3 PUFA sources. This study reflects the first application of CSIA to a complex multivariate model to determine the origin of brain fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号