首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Low density lipoprotein (LDL) oxidation within the artery wall likely represents a key event in the formation of atherosclerotic lesions. Oxidatively modified LDL particles exert chemotactic properties on macrophages, and the uncontrolled uptake of modified LDL by macrophages leads to the formation of lipid-loaded foam cells, a hallmark of early stage atherosclerosis. Human macrophages stimulated by interferon- &#110 generate reactive oxygen species (ROS), neopterin, and 7,8-dihydroneopterin. Higher concentrations of neopterin were found in atherosclerosis, and earlier studies have provided evidence that these neopterin derivatives are able to interfere with reactive species. We therefore investigated whether they also modulate LDL oxidation mediated by Cu(II) and/or peroxynitrite (ONOO &#109 ). By means of UV-absorption recording the formation of conjugated dienes in the course of lipid oxidation as well as by measuring the relative electrophoretic mobility of oxidized LDL, we found that neopterin is capable of enhancing ONOO &#109 - as well as Cu(II)-mediated LDL oxidation, whereas 7,8-dihydroneopterin mainly protects LDL from oxidation. However, in case of Cu(II)-mediated LDL oxidation, an initial prooxidative effect of 7,8-dihydroneopterin could be observed. We hypothesize that 7,8-dihydroneopterin may chemically reduce Cu(II) to Cu(I) thereby increasing its oxidative capacity. After total reduction of Cu(II), excess 7,8-dihydroneopterin may block the oxidative potential of Cu(I) and thus decrease the oxidation of LDL. These findings confirm the general behavior of pteridines in redox processes and suggest an in vivo contribution to the process of LDL oxidation.  相似文献   

2.
Human macrophages stimulated with interferon-γ generate neopterin and 7,8-dihydroneopterin which interfere with reactive species involved in LDL oxidation. While neopterin was found to have pro-oxidative effects on copper-mediated LDL oxidation, the influence of 7,8-dihydroneopterin is more complex. This study provides detailed information that 7,8-dihydroneopterin reveals both pro-oxidative and anti-oxidative effects on copper mediated LDL oxidation. 7,8-dihydroneopterin inhibited the oxidation of native LDL effectively monitored by (i) formation of conjugated dienes, (ii) relative electrophoretic mobility (EM) and (iii) specific oxidized epitopes. Using minimally oxidized LDL (mi-LDL) or moderately oxidized LDL (mo-LDL) 7,8-dihydroneopterin changed its antioxidative behavior to a strongly pro-oxidative. Incubation of 7,8-dihydroneopterin with native LDL, mi-LDL or mo-LDL in the absence of copper ions showed that formation of conjugated dienes was more increased in mo-LDL than in mi-LDL while no diene formation was observed with native LDL.

We suggest that 7,8-dihydroneopterin is a modulator for LDL oxidation in the presence of copper ions depending on the “oxidative status” of this lipoprotein.  相似文献   

3.
The formation of oxidised low density lipoprotein (LDL) within the atherosclerotic plaque appears to be a factor in the development of advanced atherosclerotic plaques. LDL oxidation is dependent on the balance of oxidants and antioxidants within the intima. In addition to producing various oxidants, human macrophages release 7,8-dihydroneopterin which in vivo is oxidised to the inflammation marker neopterin. Using macrophage-like THP-1 cells and human monocyte-derived macrophages, we demonstrate that 7,8-dihydroneopterin is a potent inhibitor of cell-mediated LDL oxidation. 7,8-Dihydroneopterin scavenges the chain propagating lipid peroxyl radical, inhibiting both lipid and protein hydroperoxide formation. A significant amount of the hydroperoxide formed during cell-mediated LDL oxidation was protein hydroperoxide. 7,8-Dihydroneopterin oxidation to 7,8-dihydroxanthopterin was only observed in the presence of both cells and LDL, showing that 7,8-dihydroneopterin had no effect on initiating oxidant generation by the cells. 7,8-Dihydroneopterin did not regenerate alpha-tocopherol but competed with it for the lipid peroxyl radical. Although stimulation of both cell types with gamma-interferon failed to produce sufficient 7,8-dihydroneopterin to inhibit LDL oxidation in tissue culture, analysis of advanced atherosclerotic plaque removed from patients showed that total neopterin levels could reach low micromolar concentrations. This suggests that 7,8-dihydroneopterin synthesis by macrophages could play a significant role in the development of atherosclerotic plaques.  相似文献   

4.
In vitro, interferon-gamma stimulates primate monocytes/macrophages to produce the pteridines neopterin and 7,8-dihydroneopterin. These pteridines are capable of modulating the oxidative potential of reactive species. Neopterin is pro-oxidative whereas 7, 8-dihydroneopterin is an effective antioxidant. In the presence of oxygen, 7,8-dihydroneopterin is rapidly oxidized and after loosing the side chain 7,8-dihydroxanthopterin is formed. It is considered that under physiological conditions, 7,8-dihydroneopterin cannot be a source for neopterin production. In this study it is demonstrated that hypochlorous acid is capable to oxidize 7,8-dihydroneopterin yielding neopterin. Neopterin is less affected by hypochlorous acid, and in a mixture of both pteridines similar to the in vivo situation, only 7,8-dihydroneopterin is oxidized, thereby increasing the ratio towards neopterin. The findings may beat relevance for the in vivo situation since hypochlorous acid shifts the neopterin/7, 8-dihydroneopterin ratio towards the side of neopterin, hence probably increasing the oxidative potential in a micro-environment.  相似文献   

5.
Neopterin and 7,8-dihydroneopterin are released by human monocytes/macrophages upon stimulation with interferon-γ. In parallel, a panel of highly reactive species is produced by macrophages as part of their cytotoxic armature, which is directed against microbial and viral challenge and against malignant growth. Recently, neopterin and 7,8-dihydroneopterin were shown to modulate the action of reactive species in vitro. In this study we investigated the impact of neopterin and 7,8-dihydroneopterin on the toxicity of reactive species, namely chloramine-T, H2O2, hypochlorite, nitrite, and formaldehyde, respectively. We studied the growth inhibition of Escherichia Coli (E. coli) by these toxic agents and its modulation by neopterin and 7,8-dihydroneopterin. Bacterial growth was monitored by optical density of suspension cultures at 600 nm. Compared to control experiments, neopterin enhanced toxicity of all reactive species tested except formaldehyde, while 7,8-dihydroneopterin reduced activity of hypochlorite and chloramine-T. No significant impact of the pteridines could be established for H2O2-mediated and formaldehyde-mediated growth inhibition. The data support the concept that neopterin and 7,8-dihydroneopterin produced during immune response in humans could be important to modulate the action of reactive species released in parallel.  相似文献   

6.
We investigated the influence of neopterin and 7,8-dihydroneopterin on the myeloperoxidase activity and secretory degranulation in neutrophils and interaction of pteridines with its major substrate (hydrogen peroxide) and intermediate product of halogenation cycle (hypochlorous acid). It was shown that, in neutrophils, the redox-pair, neopterin and 7,8-dihydroneopterin, control oxygen activation, which is regulated by myeloperoxidase. Pteridines influence the secretion of myeloperoxidase depending on concentration and decrease the level of hydrogen peroxide and hypochlorous acid, which are the substrate and intermediate product of the enzyme, respectively. It was found that, in micromolar concentrations, 7,8-dihydroneopterin is a noncompetitive inhibitor of myeloperoxidase. We suppose that myeloperoxidase facilitates 7,8-dihydroneopterin oxidation by hypochlorous acid and results in an increase in neopterin concentration. These changes modify the concentration of intracellular and extracellular reactive oxygen species.  相似文献   

7.
Human macrophages release the pterin, 7,8-dihydroneopterin when exposed to the immune stimulant gamma-interferon (IFN-gamma). Previous in vitro studies have shown 7,8-dihydroneopterin is a potent antioxidant, which inhibits copper- and peroxyl-radical mediated low-density lipoprotein (LDL) oxidation. Using THP-1 cells, a human derived monocyte-like cell line, we have found that low micromolar concentrations of 7,8-dihydroneopterin inhibit cell mediated oxidation of LDL, as measured by electrophoretic mobility, alpha-tocopherol loss, and lipid oxidation. Stimulation of the THP-1 cells with IFN-gamma caused a significant reduction in the cells' ability to oxidise LDL. The extracellular pterin concentration increased from 0 to 16 nM with IFN-gamma stimulation, while the intracellular concentration increased from 0.21 to 1.69 nmol/mg cell protein.  相似文献   

8.
Neopterin and its reduced form, 7,8 dihydroneopterin afe pteridines released from macrophages and monocytes when stimulated with interferon gamma in vivo. The function of this response is unknown though there is an enormous amount of information available on the use of these compounds as clinical markers of monocyte/macrophage activation. We have found that in vitro 7,8-dihydroneopterin dramatically increases, in a dose dependent manner, the lag time of low density lipoprotein oxidation mediated by Cu++ ions or the peroxyl radical generator 2,2'-azobis (2-amidino propane) dihydrochloride (AAPH). 7,8-Dihydroneopterin also inhibits AAPH mediated oxidation of linoleate. The kinetic of the inhibition suggests that 7,8-dihydroneopterin is a potent chain breaking antioxidant which functions by scavenging lipid peroxyl radicals. No anti-oxidant activity was observed in any of the oxidation systems studied with the related compounds neopterin and pterin.  相似文献   

9.
In cerebrospinal fluid of patients with cerebral infections, elevated concentrations of the pteridine compounds neopterin and 7,8-dihydroneopterin were detected. Here, the potential of pteridines to induce apoptosis of the rat pheochromocytoma cells (PC12) was investigated. In contrast to aromatic pteridines like neopterin, the reduced forms 7,8-dihydroneopterin, 5,6,7,8-tetrahydrobiopterin and 7,8-dihydrobiopterin led to a significant increase of apoptotic cells. After terminal differentiation, cells were less sensitive to incubation with pteridines. A noticeable augmentation of apoptosis was observed upon incubation with 7,8-dihydroneopterin and 7,8-dihydrofolic acid. Antioxidants partly protected PC12 cells from pteridine-induced apoptosis, suggesting the involvement of reactive oxygen intermediates. Exposure of cells to 7,8-dihydroneopterin led to activation of the mitogen-activated protein (MAP) kinase and to a lesser degree also of JUN/SAP kinase. Results implicate that high concentrations of reduced pteridines, might contribute to the pathogenesis involved in neurodegeneration.  相似文献   

10.
Radioimmunoassay for neopterin in body fluids and tissues   总被引:1,自引:0,他引:1  
Specific antibodies against D-erythroneopterin have been prepared in rabbits using a conjugate of D-erythroneopterin to bovine serum albumin (D-erythroneopterinylcaproyl-bovine serum albumin). The antiserum distinguished D-erythroneopterin from other pteridines, i.e., three stereoisomers of neopterin, L-erythrobiopterin, folic acid, xanthopterin, and four other synthetic pteridines. Using this specific antiserum, a radioimmunoassay for D-erythroneopterin has been developed to measure the neopterin concentrations in urine and tissues. The conjugate of D-erythroneopterin with tyramine (NP-Tyra) was synthesized and labeled with 125I as the labeled ligand NP-[125I]tyra for the radioimmunoassay. The minimal detectable amount of neopterin was about 0.1 pmol. The concentration of total neopterin (neopterin, 7,8-dihydroneopterin, quinonoid dihydroneopterin, and tetrahydroneopterin) in the biological samples was obtained by iodine oxidation under acidic conditions prior to the radioimmunoassay, and that of neopterin plus 7,8-dihydroneopterin by oxidation under alkaline conditions. Total neopterin values in human urine obtained by this new radioimmunoassay showed a good agreement with those obtained by high-performance liquid chromatography with fluorescence detection. With rat tissue samples which contained very low concentrations of neopterin as compared to biopterin, biopterin was simultaneously determined by our previously reported radioimmunoassay, and neopterin values were corrected for the cross-reactivity (0.1%). The neopterin concentrations obtained by this method agreed with the values obtained by the radioimmunoassays for neopterin and biopterin after their separation by high-performance liquid chromatography. This very small amount of neopterin, as compared with biopterin, in rat tissues could not be determined by high-performance liquid chromatography-fluorometry alone due to the masking of the neopterin peak by a large biopterin peak.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   

12.
Intracellular generation of MDA-LYS epitope in foam cells.   总被引:6,自引:0,他引:6  
Oxidative stress plays a central role in atherogenesis. Antioxidants, such as probucol, inhibit oxidation of LDL, retard secretion of interleukin-1, growth factors and chemoattractants, and thus inhibit progression of atherosclerosis. Other antioxidants with an ability to inhibit LDL oxidation, however, could not prevent progression of atherosclerosis. The inconsistency between antioxidant potencies indicated oxidative events might have occurred at locations other than LDL. MDA-lysine epitope (MDA-lys) is closely associated with atherogenesis and was recognized as marker for oxidation. We traced formation of MDA-lys during oxidation of LDL and formation of foam cells. The results indicated that thiobarbituric acid reactive substance (TBARS) was primarily present in lipid fraction of ox-LDL not associated with protein fraction after Cu2+ oxidation in vitro. Oxidized LDL did not increase significant immunoreactivity of MDA-lys epitope under our experimental conditions. Foam cells, however, showed the presence of MDA-lys epitope suggesting that intracellular oxidation events occurred to internalized lipids. The uptake of non-oxidatively modified LDL (acetylated LDL) was sufficient to generate MDA-lys epitope in foam cells, consistent with the hypothesis that atherosclerosis is associated with oxidative events in addition to LDL oxidation. We hypothesized that MDA-lys may be generated through intracellular lipid metabolism during the formation of foam cells.  相似文献   

13.
Monocyte cells are exposed to a range of reactive oxygen species (ROS) when they are recruited to a site of inflammation. In this study, we have examined the damage caused to the monocyte-like cell line U937 by peroxyl radicals and characterised the protective effect of the macrophage synthesised compound 7,8-dihydroneopterin.Exposure of U937 cells to peroxyl radicals, generated by the thermolytic breakdown of 2,2'-azobis(amidinopropane) dihydrochloride (AAPH), resulted in the loss of cell viability as measured by thiazolyl blue (MTT) reduction, and lactate dehydrogenase (LDH) leakage. The major form of cellular damage observed was cellular thiol loss and the formation of reactive protein hydroperoxides. Peroxyl radical oxidation of the cells only caused a small increase in cellular lipid oxidation measured. Supplementation of the media with increasing concentrations of 7,8-dihydroneopterin significantly reduced the cellular thiol loss and inhibited the formation of the protein hydroperoxides. High performance liquid chromatography (HPLC) analysis showed 7,8-dihydroneopterin was oxidised by both peroxyl radicals and preformed protein hydroperoxides to predominately 7,8-dihydroxanthopterin.The possibility that 7,8-dihydroneopterin is a cellular antioxidant protecting macrophage proteins during inflammation is discussed.  相似文献   

14.
Nitropyrenes are carcinogenic pollutants. Adduct formation following nitro-reduction is considered to be a major cause of nitropyrene-mediated DNA damage. We investigated the role of 1-nitrosopyrene, a metabolite of 1-nitropyrene, in causing oxidative DNA damage, using 32P-5'-end-labeled DNA. 1-Nitrosopyrene was found to facilitate Cu(II)-mediated DNA damage in the presence of NADH. Catalase and a Cu(I)-specific chelator attenuated DNA damage, indicating the involvement of H2O2 and Cu(I). Typical *OH scavenger did not have a significant effect. These results suggest that the main reactive species is probably a DNA-copper-hydroperoxo complex. We also measured 8-oxo-7,8-dihydro-2'-deoxyguanosine formation by 1-nitrosopyrene in the presence of Cu(II) and NADH, using an electrochemical detector coupled to a high-pressure liquid chromatograph. We conclude that oxidative DNA damage, in addition to DNA adduct formation, may play an important role in the carcinogenesis of nitropyrenes.  相似文献   

15.
Measurement of plasma neopterin by HPLC with fluorescence detection is used clinically as a marker of immune cell activation in the management of a number of disease pathologies. HPLC analysis of neopterin requires the acidic removal of plasma proteins but we have found that 7,8-dihydroneopterin is oxidised to neopterin with varying yield. Using acetonitrile as the precipitant, we have measured substantially higher quantities of both total neopterin (7,8-dihydroneopterin and neopterin) and neopterin from plasma of healthy and septicemia patient's. Total neopterin concentrations were on average 50% and 200% greater in healthy and septicemia subjects, respectively, when measured after acetonitrile precipitation compared to trichloroacetic acid. Our data suggests that some pterin co-precipitates with proteins during acid treatment.  相似文献   

16.
Interferon-γ stimulation of human macrophages causes the synthesis and release of neopterin and its reduced form 7,8-dihydroneopterin (7,8-NP). The purpose of this cellular response is undetermined but in vitro experiments suggests 7,8-NP is an antioxidant. We have found 7,8-NP can protect monocyte-like U937 cells from oxidative damage. 7,8-NP inhibited ferrous ion and hypochlorite mediated loss of cell viability. Fe++ mediated lipid peroxidation was effectively inhibited by 7,8-NP, however no correlation was found between peroxide concentration and cell viability. Hypochlorite was scavenged by 7,8-NP, preventing the loss of cell viability. 7,8-NP was less effective in inhibiting H2O2-mediated loss of cell viability with significant inhibition only occurring at high 7,8-NP concentrations. Analysis of cellular protein hydrolysates showed none of the oxidants caused the formation of any protein bound DOPA or dityrosine but did show 7,8-NP prevented the loss of cellular tyrosine by HOCl. Our data suggests macrophages may synthesize 7,8-NP for antioxidant protection during inflammatory events in vivo.  相似文献   

17.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

18.
Several lines of evidence indicate that oxidized LDL (Ox-LDL) may promote atherogenesis. Hence, the role of antioxidants in the prevention of LDL oxidation needs to be determined. beta-Carotene, in addition to being an efficient quencher of singlet oxygen, can also function as a radical-trapping antioxidant. Since previous studies have failed to show that beta-carotene inhibits LDL oxidation, we re-examined its effect on the oxidative modification of LDL. For these studies, LDL was oxidized in both a cell-free (2.5 microM Cu2+ in PBS) and a cellular system (human monocyte macrophages in Ham's F-10 medium). beta-Carotene inhibited the oxidative modification of LDL in both systems as evidenced by a decrease in the lipid peroxide content (thiobarbituric-acid-reacting substances activity), the negative charge of LDL (electrophoretic mobility) and the formation of conjugated dienes. By inhibiting LDL oxidation, beta-carotene substantially decreased its degradation by macrophages. beta-Carotene (2 microM) was more potent than alpha-tocopherol (40 microM) in inhibiting LDL oxidation. Thus, beta-carotene, like ascorbate and alpha-tocopherol, inhibits LDL oxidation and might have an important role in the prevention of atherosclerosis.  相似文献   

19.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2′-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble α-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

20.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds, including fisetin, morin and myricetin, on the susceptibility of low-density lipoprotein (LDL) to oxidative modification and on oxLDL uptake in macrophages. The results demonstrated that fisetin had stronger inhibitory activity than the other two on inhibiting Cu(2+)-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. The class B scavenger receptor, CD36, to which oxLDL binds, is present in atherosclerotic lesions. Treatment of U937-derived macrophages with myricetin (20 microM) significantly inhibited CD36 cell surface protein and mRNA expression (p<0.01). Fisetin, morin and myricetin (20 microM) also reduced the feed-forward induction of CD36 mRNA and surface protein expression by PPARgamma. The inhibition of CD36 by flavonols was mediated by interference with PPARgamma activation thus counteracting the deleterious autoamplification loop of CD36 expression stimulated by PPARgamma ligand. All three flavonols (10 and 20 microM) markedly decreased the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake in U937-derived macrophages dose-dependently. Current evidences indicate that fisetin, morin and myricetin not only prevent LDL from oxidation but also block oxLDL uptake by macrophages at least in part through reducing CD36 gene expression on macrophages. In conclusion, flavonols may play a role in ameliorating atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号