首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Background information. CDC25 (cell division cycle 25) phosphatases function as activators of CDK (cyclin‐dependent kinase)–cyclin complexes to regulate progression through the CDC. We have recently identified a pool of CDC25B at the centrosome of interphase cells that plays a role in regulating centrosome numbers. Results. In the present study, we demonstrate that CDC25B forms a close association with Ctn (centrin) proteins at the centrosome. This interaction involves both N‐ and C‐terminal regions of CDC25B and requires CDC25B binding to its CDK—cyclin substrates. However, the interaction is not dependent on the enzyme activity of CDC25B. Although CDC25B appears to bind indirectly to Ctn2, this association is pertinent to CDC25B localization at the centrosome. We further demonstrate that CDC25B plays a role in maintaining the overall integrity of the centrosome, by regulating the centrosome levels of multiple centrosome proteins, including that of Ctn2. Conclusions. Our results therefore suggest that CDC25B associates with a Ctn2‐containing multiprotein complex in the cytoplasm, which targets it to the centrosome, where it plays a role in maintaining the centrosome levels of Ctn2 and a number of other centrosome components.  相似文献   

2.
The mitotic cyclins promote cell division by binding and activating cyclin-dependent kinases (CDKs). Each cyclin has a unique pattern of subcellular localization that plays a vital role in regulating cell division. During mitosis, cyclin B1 is known to localize to centrosomes, microtubules, and chromatin. To determine the mechanisms of cyclin B1 localization in M phase, we imaged full-length and mutant versions of human cyclin B1-enhanced green fluorescent protein in live cells by using spinning disk confocal microscopy. In addition to centrosome, microtubule, and chromatin localization, we found that cyclin B1 also localizes to unattached kinetochores after nuclear envelope breakdown. Kinetochore recruitment of cyclin B1 required the kinetochore proteins Hec1 and Mad2, and it was stimulated by microtubule destabilization. Mutagenesis studies revealed that cyclin B1 is recruited to kinetochores through both CDK1-dependent and -independent mechanisms. In contrast, localization of cyclin B1 to chromatin and centrosomes is independent of CDK1 binding. The N-terminal domain of cyclin B1 is necessary and sufficient for chromatin association, whereas centrosome recruitment relies on sequences within the cyclin box. Our data support a role for cyclin B1 function at unattached kinetochores, and they demonstrate that separable and distinct sequence elements target cyclin B1 to kinetochores, chromatin, and centrosomes during mitosis.  相似文献   

3.
Nucleophosmin (NPM)/B23 has been implicated in the regulation of centrosome duplication. NPM/B23 localizes between two centrioles in the unduplicated centrosome. Upon phosphorylation on Thr199 by cyclin-dependent kinase 2 (CDK2)/cyclin E, the majority of centrosomal NPM/B23 dissociates from centrosomes, but some NPM/B23 phosphorylated on Thr199 remains at centrosomes. It has been shown that Thr199 phosphorylation of NPM/B23 is critical for the physical separation of the paired centrioles, an initial event of the centrosome duplication process. Here, we identified ROCK II kinase, an effector of Rho small GTPase, as a protein that localizes to centrosomes and physically interacts with NPM/B23. Expression of the constitutively active form of ROCK II promotes centrosome duplication, while down-regulation of ROCK II expression results in the suppression of centrosome duplication, especially delaying the initiation of centrosome duplication during the cell cycle. Moreover, ROCK II regulates centrosome duplication in its kinase and centrosome localization activity-dependent manner. We further found that ROCK II kinase activity is significantly enhanced by binding to NPM/B23 and that NPM/B23 acquires a higher binding affinity to ROCK II upon phosphorylation on Thr199. Moreover, physical interaction between ROCK II and NPM/B23 in vivo occurs in association with CDK2/cyclin E activation and the emergence of Thr199-phosphorylated NPM/B23. All these findings point to ROCK II as the effector of the CDK2/cyclin E-NPM/B23 pathway in the regulation of centrosome duplication.  相似文献   

4.
Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication   总被引:42,自引:0,他引:42  
In animal cells, duplication of centrosomes and DNA is coordinated. Since CDK2/cyclin E triggers initiation of both events, activation of CDK2/cyclin E is thought to link these two events. We identified nucleophosmin (NPM/B23) as a substrate of CDK2/cyclin E in centrosome duplication. NPM/B23 associates specifically with unduplicated centrosomes, and NPM/B23 dissociates from centrosomes by CDK2/cyclin E-mediated phosphorylation. An anti-NPM/B23 antibody, which blocks this phosphorylation, suppresses the initiation of centrosome duplication in vivo. Moreover, expression of a nonphosphorylatable mutant NPM/ B23 in cells effectively blocks centrosome duplication. Thus, NPM/B23 is a target of CDK2/cyclin E in the initiation of centrosome duplication.  相似文献   

5.
The activation of cdc2/cyclin B is the trigger for entry into mitosis. The mechanism of cdc2/cyclin B activation is complex, but the final step is the dephosphorylation of the Thr14 and Tyr15 residues on the cdc2 subunit, catalyzed by a member of the Cdc25 family of phosphatases. Cdc2/cyclin B1 accumulates at the centrosome in late G2 phase and has been implicated in the conversion of the centrosome from an interphase to a mitotic microtubule organizing center. Here we demonstrate biochemically that cdc2/cyclin B1 accumulates at the centrosome in late G2 as the inactive, phosphotyrosine 15 form and that the centrosomal cdc2/cyclin B1 can be activated in vitro by recombinant cdc25B. We provide evidence that a portion of the cdc2/cyclin B1 translocated into the nucleus in prophase is the inactive tyrosine-15-phosphorylated form. At this time the centrosomal and cytoplasmic cdc2/cyclin B1 is already active. This provides evidence that the activation of cdc2/cyclin B1 is initiated in the cytoplasm and that full activation of the translocated pool occurs in the nucleus.  相似文献   

6.
During G2 phase of cell cycle, centrosomes function as a scaffold for activation of mitotic kinases. Aurora-A is first activated at late G2 phase at the centrosome, facilitates centrosome maturation, and induces activation of cyclin B-Cdk1 at the centrosome for mitotic entry. Although several molecules including HEF1 and PAK are implicated in centrosomal activation of Aurora-A, signaling pathways leading to Aurora-A activation at the centrosome, and hence mitotic commitment in vertebrate cells remains largely unknown. Here, we have used Clostridium difficile toxin B and examined the role of Rho GTPases in G2/M transition of HeLa cells. Inactivation of Rho GTPases by the toxin B treatment delayed by 2 h histone H3 phosphorylation, Cdk1/cyclin B activation, and Aurora-A activation. Furthermore, PAK activation at the centrosome that was already present before the toxin addition was significantly attenuated for 2 h by the addition of toxin B, and HEF1 accumulation at the centrosome that occurred in late G2 phase was also delayed. These results suggest that Rho GTPases function in G2/M transition of mammalian cells by mediating multiple signaling pathways converging to centrosomal activation of Aurora-A.  相似文献   

7.
Centrosome duplication in mammalian cells is a highly regulated process, occurs in coordination of other cell cycle events. However, molecular exploration of this important cellular process had been difficult due to unavailability of a simple assay system. Here, using centrosomes loosely associated with nuclei isolated from cultured cells, we developed a cell-free centriole (duplication unit of the centrosome) duplication system: unduplicated centrosomes bound to the nuclei are able to undergo duplication in the presence of G1/S extracts. We show that the ability of G1/S extracts to induce centriole duplication in vitro depends on the presence of active CDK2/cyclin E. It has been shown that dissociation of centrosomal nucleophosmin (NPM)/B23 triggered by CDK2/cyclin E-mediated phosphorylation is required for initiation of centrosome duplication. We show that centriole duplication is blocked when nuclei were preincubated with the anti-NPM/B23 antibody that prevents phosphorylation of NPM/B23 by CDK2/cyclin E. These studies provide not only direct evidence for the requirement of CDK2/cyclin E and phosphorylation of NPM/B23 for centrosomes to initiate duplication, but a valuable experimental system for further exploration of the molecular regulation of centrosome duplication in somatic cells of higher animals.  相似文献   

8.
Centrosome duplication in mammalian cells is a highly regulated process, occurs in coordination of other cell cycle events. However, molecular exploration of this important cellular process had been difficult due to unavailability of a simple assay system. Here, using centrosomes loosely associated with nuclei isolated from cultured cells, we developed a cell-free centriole (duplication unit of the centrosome) duplication system: unduplicated centrosomes bound to the nuclei are able to undergo duplication in the presence of G1/S extracts. We show that the ability of G1/S extracts to induce centriole duplication in vitro depends on the presence of active CDK2/cyclin E. It has been shown that dissociation of centro-somal nucleophosmin (NPM)/B23 triggered by CDK2/cyclin E-mediated phosphorylation is required for initiation of centrosome duplication. We show that centriole duplication is blocked when nuclei were preincubated with the anti-NPM/B23 antibody that prevents phosphorylation of NPM/B23 by CDK2/cyclin E. These studies provide not only direct evidence for the requirement of CDK2/cyclin E and phosphorylation of NPM/B23 for centrosomes to initiate duplication, but a valuable experimental system for further exploration of the molecular regulation of centrosome duplication in somatic cells of higher animals.  相似文献   

9.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

10.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

11.
G2 arrest of cells suffering DNA damage in S phase is crucial to avoid their entry into mitosis, with the concomitant risks of oncogenic transformation. According to the current model, signals elicited by DNA damage prevent mitosis by inhibiting both activation and nuclear import of cyclin B1-Cdk1, a master mitotic regulator. We now show that normal human fibroblasts use additional mechanisms to block activation of cyclin B1-Cdk1. In these cells, exposure to nonrepairable DNA damage leads to nuclear accumulation of inactive cyclin B1-Cdk1 complexes. This nuclear retention, which strictly depends on association with endogenous p21, prevents activation of cyclin B1-Cdk1 by Cdc25 and Cdk-activating kinase as well as its recruitment to the centrosome. In p21-deficient normal human fibroblasts and immortal cell lines, cyclin B1 fails to accumulate in the nucleus and could be readily detected at the centrosome in response to DNA damage. Therefore, in normal cells, p21 exerts a dual role in mediating DNA damage-induced cell cycle arrest and exit before mitosis. In addition to blocking pRb phosphorylation, p21 directly prevents mitosis by inactivating and maintaining the inactive state of mitotic cyclin-Cdk complexes. This, with subsequent degradation of mitotic cyclins, further contributes to the establishment of a permanent G2 arrest.  相似文献   

12.
Mitosis is thought to be triggered by the activation of Cdk-cyclin complexes. Here we have used RNA interference (RNAi) to assess the roles of three mitotic cyclins, cyclins A2, B1, and B2, in the regulation of centrosome separation and nuclear-envelope breakdown (NEB) in HeLa cells. We found that the timing of NEB was affected very little by knocking down cyclins B1 and B2 alone or in combination. However, knocking down cyclin A2 markedly delayed NEB, and knocking down both cyclins A2 and B1 delayed NEB further. The timing of cyclin B1-Cdk1 activation was normal in cyclin A2 knockdown cells, and there was no delay in centrosome separation, an event apparently controlled by the activation of cytoplasmic cyclin B1-Cdk1. However, nuclear accumulation of cyclin B1-Cdk1 was markedly delayed in cyclin A2 knockdown cells. Finally, a constitutively nuclear cyclin B1, but not wild-type cyclin B1, restored normal NEB timing in cyclin A2 knockdown cells. These findings show that cyclin A2 is required for timely NEB, whereas cyclins B1 and B2 are not. Nevertheless cyclin B1 translocates to the nucleus just prior to NEB in a cyclin A2-dependent fashion and is capable of supporting NEB if rendered constitutively nuclear.  相似文献   

13.
The role of BubR1 has been established mainly in mitosis as an essential mitotic checkpoint protein although it is expressed throughout the cell cycle. To explore a possible role of BubR1 in regulating the G2 phase of cell cycle, we have employed siRNA–mediated hBubR1 knockdown in HeLa cells. Here, we demonstrate that reducing BubR1 levels during the G2 phase causes accelerated mitotic entry. As expected, BubR1 depletion leads to degradation of cyclin B1 in the G2 phase. Intriguingly, cyclin B1 is prematurely targeted to centrosomes appearing at early G2 phase in BubR1-depleted cells despite its low levels. This is in contrast to control cells where cyclin B1 appears at the centrosomes in early prophase based on cell cycle-specific localization of CENP-F. Furthermore, cyclin B/Cdk1 kinase activity in early G2 is aberrantly high in BubR1-depleted cells. Together, our results indicate that hBubR1 depletion triggers premature centrosomal localization of cyclin B1 probably leading to premature mitotic entry. This study is the first to suggest a role of hBubR1 in controlling centrosome targeting of cyclin B1 and timing of mitotic entry.  相似文献   

14.
Groisman I  Huang YS  Mendez R  Cao Q  Theurkauf W  Richter JD 《Cell》2000,103(3):435-447
In Xenopus development, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. CPEB and maskin, two factors that control polyadenylation-induced translation are present on the mitotic apparatus of animal pole blastomeres in embryos. Cyclin B1 protein and mRNA, whose translation is regulated by polyadenylation, are colocalized with CPEB and maskin. CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Agents that disrupt polyadenylation-induced translation inhibit cell division and promote spindle and centrosome defects in injected embryos. Two of these agents inhibit the synthesis of cyclin B1 protein and one, which has little effect on this process, disrupts the localization of cyclin B1 mRNA and protein. These data suggest that CPEB-regulated mRNA translation is important for the integrity of the mitotic apparatus and for cell division.  相似文献   

15.
HIV-1 Tat triggers intrinsic and extrinsic apoptosis pathways in both infected and uninfected cells and plays an important role in the pathogenesis of AIDS. Knocking down Tip60, an interactive protein of Tat, leads to the impairment of cell cycle progression, indicating a key role of Tip60 in cell cycle control. We found that Tip60 interacts with Plk1 through its ZnFMYST domain, and that this interaction is enhanced in the G2/M phase. In addition, cyclin B1 was confirmed to interact with the ZnF domain of Tip60. Immunofluorescence imaging showed that Tip60 co-localizes with both Plk1 and cyclin B1 at the centrosome during the mitotic phase and to the mid-body during cytokinesis. Further experiments revealed that Tip60 forms a ternary complex with Plk1 and cyclin B1 and acetylates Plk1 but not cyclin B1. HIV-1 Tat likely forms a quaternary complex with Tip60, cyclin B1 and Plk1. Fluorescent microscopy showed that Tat causes an unscheduled nuclear translocation of both cyclin B1 and Plk1, causing their co-localization with Tip60 in the nucleus. Tat, Tip60, cyclin B1 and Plk1 interactions provide new a mechanistic explanation for Tat-mediated cell cycle dysregulation and apoptosis.  相似文献   

16.
Cyclin proteins form complexes with members of the p34cdc2 kinase family and they are essential components of the cell cycle regulatory machinery. They are thought to determine the timing of activation, the subcellular distribution, and/or the substrate specificity of cdc2-related kinases, but their precise mode of action remains to be elucidated. Here we report the cloning and sequencing of avian cyclin B2. Based on the use of monospecific antibodies raised against bacterially expressed protein, we also describe the subcellular distribution of cyclin B2 in chick embryo fibroblasts and in DU249 hepatoma cells. By indirect immunofluorescence microscopy we show that cyclin B2 is cytoplasmic during interphase of the cell cycle, but undergoes an abrupt translocation to the cell nucleus at the onset of mitotic prophase. Finally, we have examined the phenotypic consequences of expressing wild-type and mutated versions of avian cyclin B2 in HeLa cells. We found that expression of cyclin B2 carrying a mutation at arginine 32 (to serine) caused HeLa cells to arrest in a pseudomitotic state. Many of the arrested cells displayed multiple mitotic spindles, suggesting that the centrosome cycle had continued in spite of the cell cycle arrest.  相似文献   

17.
Cdk2 was once believed to play an essential role in cell cycle progression, but cdk2-/- mice have minimal phenotypic abnormalities. In this study, we examined the role of cdk2 in hepatocyte proliferation, centrosome duplication, and survival. Cdk2-/- hepatocytes underwent mitosis and had normal centrosome content after mitogen stimulation. Unlike wild-type cells, cdk2-/- liver cells failed to undergo centrosome overduplication in response to ectopic cyclin D1 expression. After mitogen stimulation in culture or partial hepatectomy in vivo, cdk2-/- hepatocytes demonstrated diminished proliferation. Cyclin D1 is a key mediator of cell cycle progression in hepatocytes, and transient expression of this protein is sufficient to promote robust proliferation of these cells in vivo. In cdk2-/- mice and animals treated with the cdk2 inhibitor seliciclib, cyclin D1 failed to induce hepatocyte cell cycle progression. Surprisingly, cdk2 ablation or inhibition led to massive hepatocyte and animal death following cyclin D1 transfection. In a transgenic model of chronic hepatic cyclin D1 expression, seliciclib induced hepatocyte injury and animal death, suggesting that cdk2 is required for survival of cyclin D1-expressing cells even in the absence of substantial proliferation. In conclusion, our studies demonstrate that cdk2 plays a role in liver regeneration. Furthermore, it is essential for centrosome overduplication, proliferation, and survival of hepatocytes that aberrantly express cyclin D1 in vivo. These studies suggest that cdk2 may warrant further investigation as a target for therapy of liver tumors with constitutive cyclin D1 expression.  相似文献   

18.
Male germline stem cells (GSCs) in Drosophila melanogaster divide asymmetrically by orienting the mitotic spindle with respect to the niche, a microenvironment that specifies stem cell identity. The spindle orientation is prepared during interphase through stereotypical positioning of the centrosomes. We recently demonstrated that GSCs possess a checkpoint ("the centrosome orientation checkpoint") that monitors correct centrosome orientation prior to mitosis to ensure an oriented spindle and thus asymmetric outcome of the division. Here, we show that Par-1, a serine/threonine kinase that regulates polarity in many systems, is involved in this checkpoint. Par-1 shows a cell cycle-dependent localization to the spectrosome, a germline-specific, endoplasmic reticulum-like organelle. Furthermore, the localization of cyclin A, which is normally localized to the spectrosome, is perturbed in par-1 mutant GSCs. Interestingly, overexpression of mutant cyclin A that does not localize to the spectrosome and mutation in hts, a core component of the spectrosome, both lead to defects in the centrosome orientation checkpoint. We propose that the regulation of cyclin A localization via Par-1 function plays a critical role in the centrosome orientation checkpoint.  相似文献   

19.
The cyclin-dependent kinase inhibitor p21(cip1) regulates cell cycle progression, DNA replication, and DNA repair by binding to specific cellular proteins through distinct amino- and carboxyl-terminal protein binding motifs. We have identified a novel human gene, CARB (CIP-1-associated regulator of cyclin B), whose product interacts with the p21 carboxyl terminus. Immunocytochemical analysis demonstrates that the CARB protein is perinuclear and predominantly associated with the centrosome and mitotic spindle poles. In addition, CARB is also able to associate with cyclin B1, a key regulator of mitosis. However, cyclin B1-CARB complex formation occurs preferentially in the absence of p21. Unexpectedly, overexpression of CARB is associated with a growth-inhibitory and ultimately lethal phenotype in p21(-/-) cells but not in p21(+/+) cells. These data identify a novel mechanism that may underlie the effects of p21 in the G(2)/M phases of the cell cycle.  相似文献   

20.
Identification of physiological substrates for Cdc2/cyclin B is crucial for understanding the functional link between mitotic events and Cdc2/cyclin B activation. A human homologue of the Drosophila warts tumor suppressor, termed WARTS, is a serine/threonine kinase and a dynamic component of the mitotic apparatus. We have found that Cdc2/cyclin B forms a complex with a fraction of WARTS in the centrosome and phosphorylates the Ser613 site of WARTS during mitosis. Immunocytochemical analysis has shown that the S613-phosphorylated WARTS appears in the spindle poles at prometaphase and disappears at telophase. Our findings suggest that Cdc/cyclin B regulates functions of WARTS on the mitotic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号