首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genotypes of cereal grains, including winter barley (n = 21), maize (n = 27), oats (n = 14), winter rye (n = 22), winter triticale (n = 21) and winter wheat (n = 29), were assayed for their chemical composition and physical characteristics as part of the collaborative research project referred to as GrainUp. Genotypes of one grain species were grown on the same site, except maize. In general, concentrations of proximate nutrients were not largely different from feed tables. The coefficient of variation (CV) for the ether extract concentration of maize was high because the data pool comprised speciality maize bred for its high oil content. A subset of 8 barley, 20 rye, 20 triticale and 20 wheat samples was analysed to differ significantly in several carbohydrate fractions. Gross energy concentration of cereal grains could be predicted from proximate nutrient concentration with good accuracy. The mean lysine concentration of protein was the highest in oats (4.2 g/16 g N) and the lowest in wheat (2.7 g/16 g N). Significant differences were also detected in the concentrations of macro elements as well as iron, manganese, zinc and copper. Concentrations of arsenic, cadmium and lead were below the limit of detection. The concentration of lower inositol phosphates was low, but some inositol pentaphosphates were detected in all grains. In barley, relatively high inositol tetraphosphate concentration also was found. Intrinsic phytase activity was the highest in rye, followed by triticale, wheat, barley and maize, and it was not detectable in oats. Substantial differences were seen in the thousand seed weight, test weight, falling number and extract viscoelasticity characteristics. The study is a comprehensive overview of the composition of different cereal grain genotypes when grown on the same location. The relevance of the variation in composition for digestibility in different animal species will be subject of other communications.  相似文献   

2.
3.
Weight of individual grains is a major yield component in wheat. The non-uniform distribution of single grain weight on a wheat spike is assumed to be closely associated with starch synthesis in grains. The present study was undertaken to determine if the enzymes involved in starch synthesis cause the differences in single grain weight between superior and inferior grains on a wheat spike. Using two high-yield winter wheat (Triticum aestivum L.) varieties differing in grain weight and three nitrogen rates for one variety, the contents of amylose and amylopectin, and activities of enzymes involved in starch synthesis in both superior and inferior grains were investigated during the entire period of grain filling. Superior grains showed generally higher starch accumulation rates and activities of enzymes including SS (sucrose synthase), UDPGPPase (UDP-glucose pyrophosphorylase), ADPGPPase (ADP-glucose pyrophosphorylase), SSS (soluble starch synthase) and GBSS (starch granule bound starch synthase) and subsequently produced much higher single grain weight than inferior grains. Nitrogen increased enzyme activities and starch accumulation rates, and thus improved individual grain weight, especially for inferior grains. The SS, ADPGPPase and SSS were significantly correlated to amylopectin accumulation, while SS, ADPGPPase, SSS and GBSS were significantly correlated to amylose accumulation. This infers that SS, ADPGPPase and starch synthase play key roles in regulating starch accumulation and grain weight in superior and inferior grains on a wheat spike.  相似文献   

4.
Reaction of 10 maize inbred lines against Fusarium verticillioides and fumonisin accumulation were evaluated under field conditions with three replications in Pars Abad-e-Moghan, Iran. For artificial inoculation, the inbred lines were inoculated with spore suspension in concentration of 1 × 106 ml?1 7–10 days after emergence of silk, using nail punch method. To evaluate the development of the disease, its severity percent and grain yield (g plant?1) was determined two months after inoculation. Total fumonisin produced on maize grains were also evaluated by ELISA kits. The results showed inbred lines K19, K19/1 and K74/1 were susceptible and the rest of the inbred lines were moderately resistant to the diseases. Among moderately resistant inbred lines, A679 and K18 had lowest fumonisin accumulation. Average of the fumonisin accumulation under natural infection condition (control) was 3.37 mg kg?1 while it was 29 mg kg?1 under artificial infection condition, which was 760% more than control.  相似文献   

5.
Abstract

The paucity of information on the moulds in Indian pearl millet (Pennisetum glaucum) led to the studies that were conducted at ICRISAT, India to evaluate (a) 447 germplasm accessions of 32 countries for mould reaction in rainy season, (b) threshed grain mould rating (TGMS) and mycoflora on grains of each accession, and (c) mould scores in field and in vitro. Post physiological maturity evaluation showed that 16% of the accessions secured a mould rating of 2. In TGMS, 18% were mould free and 57% secured a rating of 2 on a 1 – 9 scale. Assessment of twenty representative accessions in vitro against individual and mixed conidial suspensions (1 × 10(6) conidia ml(?1)) of Fusarium moniliforme, F. pallidoroseum and Curvularia pennisetti indicated significant correlation (r = 0.97) between the overall field and in vitro scores of mixed spores inoculations. The mycoflora for TGMS in blotter test revealed that Fusarium moniliforme, F. pallidoroseum, Curvularia pennisetti, Helminthosporium spp., Alternaria spp. and Colletotrichum spp. to be the major fungi affecting pearl millet grain. It is advisable to harvest panicles at the physiological maturity stage to obtain better quality grains. A strong negative correlation between TGMS and % GS (r = 0.4601) and positive correlation between TGMS and % UGS (r = 0.4654) indicated that, the lesser the threshed grain mould rating higher the % seed germination.  相似文献   

6.
Gold grains collected from the Rio Saldaña River, Colombia were hundreds of micrometers in size and discoid-ellipse in shape. Fourteen of 63 grains contained an iron oxyhydroxide coating that occurred as ca. 50 to 100 nm thick lamina while thicker coatings were comprised of colloids 200 nm to 4 μm in diameter. Bacterial-size casts were observed throughout the thicker iron oxyhydroxide coating and intuitively represent relic impressions of bacterial cells. The surface textures of gold grains were generally smooth with surficial depressions or crevices containing detrital material colonized by bacteria. Focus Ion Beam (FIB) milled cross-sections demonstrated that the detrital material contained nanophase gold particles. Biofilm attached to this detrital material contained ca. 2 to 3 nm colloidal gold attached to exopolymeric substances. Cross sections of grains revealed solid cores with vesicular voids near the grain edge including a bacterial-size cast interpreted to be a permineralized bacterial cell. Synchrotron-based elemental mapping indicated that grains contained heterogenously distributed Ag and Cu. While strong Ag and Cu signals (relative to Au) were detected in the core, a stronger Au signal occurred at the edge of grains demonstrating enriched rims of secondary gold. The preservation of bacterial casts and biofilms associated with secondary gold structures at the surface of grains suggest that bacteria may contribute to gold enrichment and growth in this placer environment. Bacteria, occurring on the surface of 13 of 25 gold grains, were enriched by “inoculating” individual grains into separate test tubes containing R2B growth medium. Enriched growth of bacteria on gold grain surfaces demonstrated preferential attachment onto detrital material within creviced regions. The dominant bacteria from these enrichments were transferred to solid R2A medium to obtain pure isolates. The isolates were identified as one of four bacterial species: Nitrobacter sp. 263, Shewanella sp. YM-8, Sediminibacterium sp. B2-10-2 and sp. I-32 based on 16S ribosomal DNA sequencing.  相似文献   

7.
Abstract

Fusarium oxysporum Schlecht and Botryodiplodia theobromae Pat., two important post-harvest pathogens of yam (Dioscorea rotundata L.) tubers in storage were found to produce oxalic acid (OA) in vitro and in vivo. The rate of OA accumulation was proportional to fungal growth (cell mass) in Potato Dextrose liquid medium during 10 days incubation period. Further, simultaneous co-culturing of either of the fungi with Bacillus subtilis CM1 isolated from cowdung culturable microflora resulted in 92% reduction in OA accumulation compared with that in the culture of the individual fungus. The effect was more prominent in pH 5 – 6 than in pH 7 – 8. B. subtilis CM1 was capable of detoxifying OA and several proteins were detected in the culture filtrates when it was grown in peptone-mineral salt medium containing OA. SDS-PAGE analysis of 70% ammonium sulphate fraction of the culture filtrate exhibited the presence of a predominant 97 kDa protein.  相似文献   

8.
The greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae) has been known as a major pest of small grains, particularly wheat, worldwide. In this study, the effect of new wheat cultivar (Pishgam) for cold regions on biological characteristics of greenbug was investigated in a greenhouse at 25 ± 2 °C, 55 ± 10% relative humidity and a photoperiod of 16:8 h (L:D). The raw data were analysed based on the age-stage, two-sex life table. The intrinsic rate of increase (r), the finite rate of increase (λ), the net reproduction rate (R0) and the mean generation time (T) of greenbug were 0.313 ± 0.0019, 1.36 ± 0.0027 females/female/day, 83.33 ± 0.331 females/female and 14.11 ± 0.09 days, respectively. The life expectancy of a nymph is 43.57 days. The maximum reproductive value of females is on the 16th day which coincides with the total pre-reproduction period counted from birth. Hence, the present results may provide helpful information for comprehensive IPM programme of greenbug on this variety in cold regions of Iran. Result revealed that nymphal survival rate of the aphid was 100% on studied cultivar like that on sensitive host plant cultivar.  相似文献   

9.
Abstract

Leaf rust of wheat (Triticum aestivum L.), incited by Puccinia recondita ex Desm. f. sp. tritici Eriks, is one of the most important wheat diseases in Egypt. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defense reactions in conifers and might be used to increase systemic resistance against biotic damage. In the greenhouse, different concentrations of MJ (10, 20 and 30 mM) were applied as seed soaking plus foliar spray or only as foliar spray to control leaf rust and induction of secondary compound production in leaves of wheat plants. Foliar spray was applied after 30 and 50 days of sowing. Results indicated that all concentrations and treatments reduced the severity of rust disease caused by P. recondita f. sp. tritici in wheat leaves during 45 days of inoculations. Disease incidence was decreased significantly in MJ-treated plants as seed soaking plus foliar spray with 20 and 30 mM when compared to 10 mM MJ or control plants. The study revealed that, with increasing concentrations of MJ, the secondary metabolites were greatly increased. Endogenous levels of both free and conjugated putrescine, spermidine and spermine increased in response to the elicitor. Activities of polyamine biosynthetic enzymes of ornithine decarboxylase (ODC) and polyamine oxidase (PAO) displayed up to threefold increases relative to untreated control. Moreover, significant increases in activities of plant defense-related protein, enzymes as peroxidase and chitinase as well as free and conjugated phenols contents were recorded in treated plants compared with untreated and infected plants. Furthermore, MJ treatment increased the chlorophyll-a, chlorophyll-b and carotenoids pigments contents, the higher increase was obtained with combined treatment between seeds soaking plus foliar spray at 20 and 30 mM of MJ. Under field conditions, three concentrations of MJ, i.e. 10, 20 and 30 mM as combined treatment between seeds soaking plus foliar spray or only as foliar spray were applied to study their effect against rust disease. Foliar spray was applied after 30 and 80 days of sowing. Results showed that the high reduction in disease severity was obtained with combined treatments between seeds soaking plus foliar spray with MJ at 20 and 30 mM compared with other treatments and control. At the same time, all treatments increased the growth and grain yield of wheat plants. It could be suggested that combination treatment between seeds soaking plus foliar spray with methyl jasmonate might be used commercially for controlling rust disease of wheat plants under field conditions.  相似文献   

10.

δ, C isotope composition relative to Pee Dee Belemnite
WSC, water-soluble carbohydrates
N, nitrogen
C, carbon
cv, cultivar
ME, efficiency of mobilized pre-anthesis C utilization in grain filling (g C g–1C)

Significant mobilization of protein and carbohydrates in vegetative plant parts of wheat regularly occurs during grain filling. While this suggests a contribution of reserves to grain filling, the actual efficiency of mobilized assimilate conversion into grain mass (ME) is unknown. In the present study the contribution of pre-anthesis C (C fixed prior to anthesis) to grain filling in main stem ears of two spring wheat (Triticum aestivum L.) cultivars was determined by 13C/12C steady-state labelling. Mobilization of pre-anthesis C in vegetative plant parts between anthesis and maturity, and the contributions of water-soluble carbohydrates (WSC) and protein to pre-anthesis C mobilization were also assessed. Experiments were performed with two levels of N fertilizer supply in each of 2 years. Pre-anthesis reserves contributed 11–29% to the total mass of C in grains at maturity. Pre-anthesis C accumulation in grains was dependent on both the mass of pre-anthesis C mobilized in above-ground vegetative plant parts (r2 = 0·87) and ME (defined as g pre-anthesis C deposited in grains per g pre-anthesis C mobilized in above-ground vegetative plant parts; r2 = 0·40). ME varied between 0·48 and 0·75. The effects of years, N fertilizer treatments and cultivars on ME were all related to differences in the fractional contribution of WSC to pre-anthesis C mobilization. Multiple regression analysis indicated that C from mobilized pre-anthesis WSC may be used more efficiently in grain filling than C present in proteins at anthesis and mobilized during grain filling. Possible causes for variability of ME are discussed.  相似文献   

11.

Key message

Water-soluble carbohydrate accumulation can be selected in wheat breeding programs with consideration of genetic × environmental interactions and relationships with other important characteristics such as relative maturity and nitrogen concentration, although the correlation between WSC traits and grain yield is low and inconsistent.

Abstract

The potential to increase the genetic capacity for water-soluble carbohydrate (WSC) accumulation is an opportunity to improve the drought tolerance capability of rainfed wheat varieties, particularly in environments where terminal drought is a significant constraint to wheat production. A population of elite breeding germplasm was characterized to investigate the potential for selection of improved WSC concentration and total amount in water deficit and well-watered environments. Accumulation of WSC involves complex interactions with other traits and the environment. For both WSC concentration (WSCC) and total WSC per area (WSCA), strong genotype × environment interactions were reflected in the clear grouping of experiments into well-watered and water deficit environment clusters. Genetic correlations between experiments were high within clusters. Heritability for WSCC was larger than for WSCA, and significant associations were observed in both well-watered and water deficit experiment clusters between the WSC traits and nitrogen concentration, tillering, grains per m2, and grain size. However, correlations between grain yield and WSCC or WSCA were weak and variable, suggesting that selection for these traits is not a better strategy for improving yield under drought than direct selection for yield.
  相似文献   

12.
Cadmium (Cd) accumulation in edible crops is undesirable due to its hazardous influences on human health. The objectives of this study were: i) to evaluate the spatial variability of grain Cd and its relationships with soil properties in 4000 km2 wheat farms; ii) to evaluate the effect of wheat cultivar on the soil properties vs. grain Cd relationships. A number of 255 soil (0–20 cm) and grain samples were taken and Cd concentrations in grain samples and some soil properties were measured. Grain Cd concentrations in 95 percent of the samples exceeded the threshold of 0.2 mg kg?1. Durum wheat had more potential to accumulate Cd in grain (0.76 mg kg?1) than bread (0.69 mg kg?1). There was significant (p < 0.01) correlation between grain Cd and organic carbon (r = 0.66), CEC (r = 0.77) and DTPA-extractable Cd (p < 0.05) (r = 0.57) of the soils. Greater Pearson coefficient values for durum wheat showed that, in the studied calcareous soils, organic carbon, CEC, Cd-DTPA had more effects on durum wheat than bread wheat cultivar. The obtained Kriging map of grain Cd identified three hotspots at the east (durum wheat cultivation), the west (intensive irrigated wheat farms), and south (wheat farms around petrochemical industries) of the region. Agricultural mismanagement due to overusing P-fertilizers increased Cd concentration in the topsoils and grains of wheat farms in the study area.  相似文献   

13.
Li  Jianbo  Lang  Tao  Li  Bin  Yu  Zhihui  Wang  Hongjin  Li  Guangrong  Yang  Ennian  Yang  Zujun 《Planta》2017,245(6):1121-1135
Main conclusion

Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat– Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust.

Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat–Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat–Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2JS addition line, two substitution lines of 4JS(4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60–1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4JS and 2JS appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.

  相似文献   

14.
Background

Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the ‘Green Revolution’ gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/denso locus allows to estimate the impact of the functional polymorphism of this gene on the variation of agronomically important traits in barley.

Results

We investigated the effect of the 7-bp deletion in exon 1 of HvGA20ox2 gene (sdw1.d mutation) on the variation of yield-related and malting quality traits in the population of DHLs derived from cross of medium tall barley Morex and semi-dwarf barley Barke. Segregation of plant height, flowering time, thousand grain weight, grain protein content and grain starch was evaluated in two diverse environments separated from one another by 15° of latitude. The 7-bp deletion in HvGA20ox2 gene reduced plant height by approximately 13 cm and delayed flowering time by 3–5 days in the barley segregating DHLs population independently on environmental cue. On other hand, the sdw1.d mutation did not affect significantly either grain quality traits (protein and starch content) or thousand grain weight.

Conclusions

The beneficial effect of the sdw1.d allele could be associated in barley with lodging resistance and extended period of vegetative growth allowing to accumulate additional biomass that supports higher yield in certain environments. However, no direct effect of the sdw1.d mutation on thousand grain weight or grain quality traits in barley was detected.

  相似文献   

15.
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl20 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer.  相似文献   

16.
Recombinant allergens and antibodies are needed for diagnostic, therapeutic, food processing and quality verification purposes. The aim of this work was to develop a barley-based production system for β-lactoglobulin (BLG) specific immunoglobulin E antibody (D1 scFv). The expression level in the best barley cell clone was 0.8–1.2 mg/kg fresh weight, and was constant over an expression period of 21 days. In the case of barley grains, the highest stable productivity (followed up to T2 grains) was obtained when the D1 scFv cDNA was expressed under a seed-specific Glutelin promoter rather than under the constitutive Ubiquitin promoter. Translational fusion of ER retention signal significantly improved the accumulation of recombinant antibody. Furthermore, lines without ER retention signal lost D1 scFv accumulation in T2 grains. Pilot scale purification was performed for a T2 grain pool (51 g) containing 55.0 mg D1 scFv/kg grains. The crude extract was purified by a two-step purification protocol including IMAC and size exclusion chromatography. The purification resulted in a yield of 0.47 mg of D1 scFv (31 kD) with high purity. Enzyme-linked immunosorbent assay revealed that 29 % of the purified protein was fully functional. In immunoprecipitation assay the purified D1 scFv recognized the native 18 kD BLG in the milk sample. No binding was observed with the heat-treated milk sample, as expected. The developed barley-based expression system clearly demonstrated its potential for application in the processing of dairy milk products as well as in detecting allergens from foods possibly contaminated by bovine milk.  相似文献   

17.
Barron C  Parker ML  Mills EN  Rouau X  Wilson RH 《Planta》2005,220(5):667-677
Endosperm cell walls of cultivars of wheat (Triticum aestivum L.) selected for their endosperm texture (two soft and two hard) were analysed in situ by Fourier transform infrared (FTIR) microspectroscopy. FTIR imaging coupled with statistical analysis was used to map the compositional and structural heterogeneity within transverse sections from which cell contents had been removed by sonication. In the majority of grains analysed, two distinct populations of endosperm cells could be identified by spectral features that were related to cell morphology and age, regardless of cultivar. The main cell-wall component responsible for these differences was the polysaccharide arabinoxylan. In a few samples, this heterogeneity was absent, for reasons that are not understood, but this was not correlated to endosperm texture or growth conditions. Within the same population of endosperm cells, cell walls of hard endosperm could be distinguished from those of soft endosperm by their spectral features. Compared to hard cultivars, the peripheral endosperm of soft cultivars was characterised by a higher amount of polymer, whose spectral feature was similar to water-extractable arabinoxylan. In contrast, no specific compound has been identified in the central endosperm: structural differences within the polysaccharides probably contribute to the distinction between hard and soft cultivars. In developing grain, a clear difference in the composition of the endosperm cell walls of hard and soft wheat cultivars was observed as early as 15 days after anthesis.  相似文献   

18.
由禾谷镰刀菌(Fusarium graminearum, Fg)引起的赤霉病是限制小麦生产的主要病害之一。生物防治是一种高效且可持续的防治方法。【目的】从小麦种子内筛选具有抑制禾谷镰刀菌的菌株并对其生防潜力进行评估,为小麦赤霉病生防制剂的开发与利用提供菌种资源及理论支撑。【方法】采用平板对峙、孢子萌发法和无菌上清液抑菌试验筛选小麦种子内对禾谷镰刀菌具有拮抗活性的内生菌株;利用扫描电镜(scanning electron microscope, SEM)和共聚焦扫描电镜(confocal laser scanning microscope, CLSM)观察并分析无菌上清液对Fg的分生孢子形态、膜完整性以及胞内活性氧的影响;通过盆栽试验验证内生菌对小麦赤霉病的生防效果;应用二代Illumina HiSeq测序平台进行全基因组测序。【结果】从小麦种子中分离出一株高效抑制Fg生长的内生菌株JB7,其衰亡期无菌上清液对Fg孢子萌发抑制率高达85.23%。菌株JB7的无菌上清液使Fg孢子表面凹陷,破坏其细胞膜,造成核酸和蛋白质的渗漏,诱导Fg菌丝活性氧的累积,引起Fg菌丝可溶性蛋白和丙二醛含量的显著升高。该菌株具有分泌蛋白酶、纤维素酶、葡聚糖酶和产铁载体的能力。盆栽试验表明菌株JB7能显著降低小麦赤霉病的病情指数(P<0.05)。经全基因组学鉴定为甲基营养型芽孢杆菌(Bacillus methylotrophicus) JB7,该菌株基因组中含有12个抑菌功能的次级代谢产物合成基因簇。【结论】菌株JB7能抑制禾谷镰刀菌的生长,对小麦赤霉病有较强的防效,可作为生物防治小麦赤霉病的候选菌株。  相似文献   

19.
Salinity and drought are important agro-environmental problems occurring separately as well as together with the combined occurrence increasing with time due to climate change. Screening of bread wheat genotypes against salinity or drought alone is common; however, little information is available on the response of wheat genotypes to a combination of these stresses. This study investigates the response of a salt-resistant (SARC-1) and a salt-sensitive (7-Cerros) wheat genotype to drought at different growth stages under non-saline (ECe 2.1 dS m?1) and saline soil (ECe 15 dS m?1) conditions. Drought was applied by withholding water for 21 days at a particular growth stage viz. tillering, booting, and grain filling stages. At booting stage measurements regarding water relations, leaf ionic composition and photosynthetic attributes were made. At maturity grain yield and different yield, components were recorded. Salinity and drought significantly decreased grain yield and different yield components with a higher decrease in the case of combined stress of salinity × drought. The complete drought treatment (drought at tillering + booting + grain filling stages) was most harmful for wheat followed by drought at booting stage and grain filling–tillering stages, respectively. The salt-resistant wheat genotype SARC-1 performed better than the salt-sensitive genotype 7-Cerros in different stress treatments. A decrease in the water and turgor potentials, photosynthetic and transpiration rates, stomatal conductance, leaf K+, and increased leaf Na+ were the apparent causes of growth and yield reduction of bread wheat due to salinity, drought, and salinity × drought.  相似文献   

20.
The objective of this research was to compare values for digestible energy (DE) and metabolisable energy (ME) and apparent total tract digestibility (ATTD) of nutrients in 11 diets fed to both growing pigs and gestating sows. Three diets were based on corn, wheat or sorghum and eight diets were based on a combination of corn and soybean meal, canola meal, conventional distillers’ dried grains with solubles, low-fat distillers’ dried grains with solubles, corn germ meal, corn bran, wheat middlings or soybean hulls. A total of 88 gestating sows (252 ± 24.2 kg BW; parity two to six) and 88 growing barrows (40 ± 4.7 kg BW) were used and randomly allotted to the 11 diets with eight replicate sows or pigs per diet. Faecal and urine samples were collected for 4 d following a 19 d adaptation period. The DE, ME and ATTD of gross energy (GE), acid detergent fibre (ADF), neutral detergent fibre (NDF) and crude protein (CP) in the 11 diets were calculated. Gestating sows had greater (p < 0.05) ATTD of GE and CP and DE values for all diets compared with growing pigs. Gestating sows also had greater (p < 0.05) ME values than growing pigs for the three grain diets and the diets containing wheat middlings and soybean hulls. No differences were observed in ATTD of ADF and NDF between gestating sows and growing pigs for any of the diets, except that gestating sows had greater (p < 0.05) ATTD of NDF than growing pigs when they were fed the four protein diets. The ATTD of GE and CP and DE values in gestating sows may be predicted by using equations generated from the values of ATTD of GE and CP and DE values obtained in growing pigs. Results of this research indicate that ATTD values of CP and GE obtained in gestating sows are greater than the values obtained in growing pigs, but values for ATTD of ADF obtained in growing pigs are not different from values in gestating sows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号