首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the capacity of dietary (−)-epicatechin (EC) to mitigate insulin resistance through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome. Adolescent rats were fed a regular chow diet without or with high fructose (HFr; 10% w/v) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in the diet. HFr-fed rats developed insulin resistance, which was mitigated by EC supplementation. Accordingly, the activation of components of the insulin signaling cascade (insulin receptor, IRS1, Akt, and ERK1/2) was impaired, whereas negative regulators (PKC, IKK, JNK, and PTP1B) were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or totally prevented by EC supplementation. In addition, EC inhibited events that contribute to insulin resistance: HFr-associated increased expression and activity of NADPH oxidase, activation of redox-sensitive signals, expression of NF-κB-regulated proinflammatory cytokines and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and are relevant for defining interventions that can prevent/mitigate MetS-associated insulin resistance.  相似文献   

2.
3.
4.
Background

Testicular injury is one of the most serious problems associated with diabetes mellitus. The present study aimed to compare the effects of two different doses of nobiletin and analyze its mechanisms of action against diabetes-induced testicular impairment in rats.

Methods and results

Streptozotocin injection was used to induce diabetes. Diabetic rats received nobiletin orally at 10 or 25 mg/kg daily for 30 days. Diabetic rats displayed significant elevations in glucose, glycosylated hemoglobin (HbA1c), Homeostatic Model of Insulin Resistance (HOMA-IR), and pro-inflammatory cytokines, while the serum levels of insulin, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were significantly reduced. Histological changes to positivity for caspase-3 and decreased androgen receptors (AR) immunoexpression were observed in diabetic rats. Both doses of nobiletin improved hyperglycemia, reduced pro-inflammatory cytokines, and augmented insulin, testosterone, LH, and FSH levels. LH and FSH receptors and cytochrome P450 17 α-hydroxylase (CYP17A1) were markedly downregulated in terms of both gene and protein expression in testicular tissues of the diabetic group, effects that were markedly ameliorated with both doses of nobiletin. In addition, both doses significantly reduced lipid peroxidation and caspase-3 immunoexpression and improved the activity of the antioxidant enzymes and AR in testicular tissues of the diabetic group.

Conclusion

Both nobiletin doses showed protective effects against diabetes-induced testicular injury by reducing oxidative stress, hyperglycemia, inflammation, and caspase-3 and upregulating the hypophysis–gonadal axis and AR. The high dose of nobiletin was more effective than the lower one.

  相似文献   

5.

Aims

Both mast cells and oxidative stress are involved in acute lung injury (ALI) induced by intestinal ischemia–reperfusion (IIR). The aim of this study was to investigate whether propofol could improve IIR-induced ALI through inhibiting their interaction.

Main methods

Repetitive, brief IIR or IIR + compound 48/80 was performed in adult Sprague–Dawley rats pretreated with saline, apocynin or propofol. And their lungs were excised for histology, ELISA and protein-expression measurements 2 h after reperfusion.

Key findings

Rats pretreated with saline developed critical ALI 2 h after IIR. We found significant elevations in lung injury scores, lung wet/dry ratio and gp91phox, p47phox, intercellular cell adhesion molecule-1 protein expressions and higher level of malondialdehyde, interleukin-6 contents, and myeloperoxidase activities, as well as significant reductions in superoxide dismutase activities, accompanied with increases in mast cell degranulation evidenced by significant increases in mast cell counts, β-hexosaminidase concentrations, and tryptase expression. And the lung injury was aggravated in the presence of compound 48/80. However, pretreated with propofol and apocynin not only ameliorated the IIR-mediated pulmonary changes beyond the biochemical changes but also reversed the changes that were aggravated by compound 48/80.

Significance

Propofol protects against IIR-mediated ALI, most likely by inhibiting the interaction between oxidative stress and mast cell degranulation.  相似文献   

6.
Wang  Ning  Gao  Qing  Shi  Jie  Yulan  Chen  Ji  Weimeng  Sheng  Xiumei  Zhang  Rui 《Molecular biology reports》2022,49(9):8727-8740
Molecular Biology Reports - During the pathogenesis and progression of diabetes, lipotoxicity is a major threat to the function and survival of pancreatic β-cells. To battle against the...  相似文献   

7.
Acute lung injury (ALI) is a serious disease with unacceptably high mortality and morbidity rates. Up to now, no effective therapeutic strategy for ALI has been established. Rutin, quercetin-3-rhamnosyl glucoside, expresses a wide range of biological activities and pharmacological effects, such as anti-inflammatory, antihypertensive, anticarcinogenic, vasoprotective, and cardioprotective activities. Pretreatment with rutin inhibited not only histopathological changes in lung tissues but also infiltration of polymorphonuclear granulocytes into bronchoalveolar lavage fluid in lipopolysaccharide (LPS)-induced ALI. In addition, LPS-induced inflammatory responses, including increased secretion of proinflammatory cytokines and lipid peroxidation, were inhibited by rutin in a concentration-dependent manner. Furthermore, rutin suppressed phosphorylation of NF-κB and MAPK and degradation of IκB, an NF-κB inhibitor. Decreased activities of antioxidative enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase-1 caused by LPS were reversed by rutin. At the same time, we found that ALI amelioration by chelation of extracellular metal ions with rutin is more efficacious than with deferoxamine. These results indicate that the protective mechanism of rutin is through inhibition of MAPK–NF-κB activation and upregulation of antioxidative enzymes.  相似文献   

8.
Dysfunction of the intestinal barrier function occurs in hepatic injury, but the specific mechanisms responsible are largely unknown. Recently, NOD-like receptor 3 (NLRP3) inflammasome functions in impairing endothelial barrier function. In this study, we test the hypothesis that TXNIP–NLRP3 axis repression prevents against intestinal barrier function disruption in nonalcoholic steatohepatitis (NASH). First, lipopolysaccharide (LPS)-induced alterations in expression of ZO-1 and occludin, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) level, and transepithelial electric resistance (TEER) in intestinal epithelial cells (IECs) isolated from C57BL/6 wild-type (WT) and TXNIP−/− mice were evaluated. The underlying regulatory mechanisms of TXNIP knockout in vivo were investigated with the detection of expressions of TXNIP, NLRP3 and ZO-1, and occludin, the interaction of TXNIP–NLRP3, MPO activity, ROS level, permeability of intestinal mucosa, levels of inflammatory factors in serum, and LPS concentration. We identified that TXNIP knockout promoted ZO-1 and occludin expression, yet reduced MPO activity, ROS level, and cell permeability in IECs, indicating restored the intestinal barrier function. However, LPS upregulated TXNIP and NLRP3 expression, as well as contributed to the interaction between TXNIP and NLRP3 in vitro. Furthermore, TXNIP was significantly upregulated in the intestinal mucosa of NASH mice and its knockout repaired the intestinal barrier disrupt, inhibited expression of inflammatory factors, and reduced LPS concentration as well as hepatic injury in vivo. Taken together, our findings demonstrated that inhibited the activation of the TXNIP–NLRP3 axis reduced MPO activity and oxidative stress and thus restoring the intestinal barrier function in NASH. TXNIP–NLRP3 axis may be a promising therapeutic strategy for the NASH treatment.  相似文献   

9.
Epidemiologic evidence strongly supports a causal role for Helicobacter pylori in gastric carcinogenesis. The infection was recognized as a Class I human carcinogen by the International Agency for Research on Cancer in 1994. The bacterium does not induce carcinogenesis by itself. The present scientific consensus is that the bacterial oncogenic role is mediated by the chronic active inflammation it elicits in the gastric mucosa. Although the ultimate basic mechanism of carcinogenesis is unknown, strongly suggestive evidence points to oxidative stress as having a pivotal role in the process. This review discusses some of the evidence accumulated so far to support such a role. Numerous avenues of research are open and represent an intriguing challenge to the scientific community.  相似文献   

10.
Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors α (PPARα) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs.Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.  相似文献   

11.
12.
This study aimed to examine whether lung tissue extracellular matrix (ECM) hydrogels have protective effects on radiation-induced lung injury (RILI). The cytocompatibility and histocompatibility were tested for the obtained ECM-derived hydrogel. Sprague–Dawley rats were randomly divided into three groups (n = 18): control group (control); rats receiving irradiation and intratracheal injection of normal saline (IR + NS); and rats receiving irradiation and intratracheal injection of lung ECM-derived hydrogel (IR + ECM). The wet/dry weight ratio was used to evaluate the congestion and edema of the lungs. Histopathological analysis of lung tissues was performed using hemotoxylin and eosin staining and Masson's trichrome staining. Immunohistochemical staining and western blot analyses were carried out to determine the expression of epithelial–mesenchymal transition (EMT)-related proteins in lung tissues (E-cadherin, α-smooth muscle actin [α-SMA], and vimentin). In addition, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and interleukin-6 (IL-6), hydroxyproline, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were also evaluated. The ECM-derived hydrogels had good cytocompatibility and histocompatibility. ECM-derived hydrogel treatment improved lung histopathology injury and pulmonary edema. Higher expression of E-cadherin and lower expression of vimentin and α-SMA were found in the IR + ECM group compared with those in the IR + NS group. Hydroxyproline levels were reduced by ECM-derived hydrogel treatment compared with those in the IR + NS group. Obvious increases of TNF-α, IL-6, and TGF-β1 were identified following irradiation. Marked reductions in MDA content and increases in SOD were induced by ECM-derived hydrogel treatment in rats after radiation. ECM-derived hydrogels were shown to protect against RILI, potentially by reducing EMT, inflammation, and oxidative damage.  相似文献   

13.
In this report, mutual effect of α-synuclein and GPX-1 is investigated to unveil their involvement in the PD pathogenesis in terms of cellular defense mechanism against oxidative stress. Biochemical and immunocytochemical studies showed that α-synuclein enhanced the GPX-1 activity with Kd of 17.3 nM and the enzyme in turn markedly enhanced in vitro fibrillation of α-synuclein. Transmission electron microscopy revealed the fibrillar meshwork of α-synuclein containing GPX-1 located in locally concentrated islets. The entrapped enzyme was demonstrated to be protected in a latent form and its activity was fully recovered as released from the matrix. Therefore, novel defensive roles of α-synuclein and its amyloid fibrils against oxidative stress are suggested as the GPX-1 stimulator and the active depot for the enzyme, respectively.  相似文献   

14.
15.
Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis.  相似文献   

16.
17.
18.
Chen  Xi  Yan  Hong  Chen  Ying  Li  Guo  Bin  Yue  Zhou  Xiyuan 《Molecular and cellular biochemistry》2021,476(3):1631-1642
Molecular and Cellular Biochemistry - The epithelial–mesenchymal transition (EMT) plays a significant role in fibrosis and migration of lens epithelial cells (LECs), and eventually induces...  相似文献   

19.
TNF-α inhibitor reportedly protects against myocardial ischemia/reperfusion (MI/R) injury. It can also increase Notch1 expression in inflammatory bowel disease, revealing the regulation of Notch1 signaling by TNF-α inhibitor. However, the interaction between TNF-α inhibitor and Notch1 signaling in MI/R remains unclear. This study aimed to determine the involvement of TNF-α inhibitor with Notch1 in MI/R and delineate the related mechanism. Notch1-specific small interfering RNA (20 μg) or Jagged1 (a Notch ligand, 12 μg) was delivered through intramyocardial injection. Forty-eight hours after injection, mice received 30 min of myocardial ischemia followed by 3 h (for cell apoptosis and oxidative/nitrative stress) or 24 h (for infarct size and cardiac function) of reperfusion. Ten minutes before reperfusion, mice randomly received an intraperitoneal injection of vehicle, etanercept, diphenyleneiodonium, 1400W, or EUK134. Finally, downregulation of Notch1 significantly reversed the alleviation of MI/R injury induced by etanercept, as evidenced by enlarged myocardial infarct size, suppressed cardiac function, and increased myocardial apoptosis. Moreover, Notch1 blockade increased the expression of inducible NO synthase (iNOS) and gp91phox, enhanced NO and superoxide production, and accelerated their cytotoxic reaction product, peroxynitrite. Furthermore, NADPH inhibition with diphenyleneiodonium or iNOS suppression with 1400W mitigated the aggravation of MI/R injury induced by Notch1 downregulation in mice treated with etanercept. Additionally, either Notch1 activation with Jagged1 or peroxynitrite decomposition with EUK134 reduced nitrotyrosine content and attenuated MI/R injury. These data indicate that MI/R injury can be attenuated by TNF-α inhibitor, partly via Notch1 signaling-mediated suppression of oxidative/nitrative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号