首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的:观察二氢杨梅素(DHM)对2型糖尿病(T2DM)小鼠认知功能障碍及海马中BDNF蛋白表达的影响。方法:将40只C57BL/6J小鼠首先随机分为两组:正常对照组(n=8):普通饲料喂养;2型糖尿病模型组(n=32):高糖高脂联合100 mg/kg的STZ处理(造模过程中死亡5只,不成功3只)。24只建模成功的小鼠随机分成3组:T2DM组、T2DM+L-DHM组和T2DM+H-DHM组,3组小鼠高糖高脂喂养,同时分别用等体积生理盐水、125 mg/(kg·d)的DHM和250 mg/(kg·d)的DHM (1次/天,灌胃)处理16周。正常对照小鼠继续普通饲料喂养,同时用等体积生理盐水(1次/天,灌胃)处理16周。16周后测定小鼠体重、空腹血糖、进行腹腔注射葡萄糖耐量实验和相关行为学实验。最后,Western blot检测各组小鼠海马中BDNF蛋白的表达。结果:高糖高脂联合100 mg/kg的STZ成功建立2型糖尿病小鼠模型。16周后,与正常对照组相比,T2DM组小鼠体重明显下降,空腹血糖显著升高,糖耐量显著异常;而T2DM+DHM组相比T2DM组小鼠体重却显著增加、空腹血糖降低,且H-DHM可显著改善T2DM小鼠糖耐量异常。行为学实验结果显示:与正常对照组相比,T2DM组小鼠学习记忆能力明显下降;与T2DM组相比,T2DM+DHM组小鼠学习记忆能力得到改善,且H-DHM组更为明显。Western blot结果显示:与对照组相比,T2DM组小鼠海马中BDNF蛋白表达显著下降,而DHM组相比T2DM组小鼠其BDNF蛋白的表达明显增加。结论:二氢杨梅素可改善2型糖尿病小鼠认知功能障碍,其机制可能通过降血糖作用,并激活海马中BDNF蛋白表达。  相似文献   

2.
链脲佐菌素诱导长爪沙鼠Ⅰ型糖尿病模型的实验研究   总被引:1,自引:0,他引:1  
目的探讨链脲佐菌素(STZ)诱导长爪沙鼠Ⅰ型糖尿病模型的可能性,并观察模型动物早期肾脏损害情况。方法雄性长爪沙鼠96只,随机分为正常对照组(NC组)、模型组1(DM1组)、模型组2(DM2组),DM1及DM2组沙鼠分别一次性腹腔注射100 mg/kg、200 mg/kg STZ,NC组注射等量柠檬酸盐缓冲溶液。注射STZ后1、2、4、6周末,分别监测沙鼠一般情况,血糖、胰岛素等血清学指标和尿液指标,并处死沙鼠进行胰腺和肾脏组织的病理学检查。结果注射STZ 24 h后,DM2组及DM1组部分沙鼠逐渐出现典型的"三多一少"症状,随着病程的发展,DM2组沙鼠持续高血糖,DM1组沙鼠血糖值与NC组差异有显著性(P0.05),但有下降趋势;DM2组沙鼠胰岛素显著性降低(P0.05),其他血清学指标及尿液指标均显著性升高(P0.05),DM1组沙鼠各指标差异无显著性。DM2组沙鼠及DM1组少数沙鼠胰腺组织中可见胰岛β细胞减少、空泡样变性等变化,DM2组沙鼠肾脏组织中出现肾小球基质增多,毛细血管襻扩张等病变,DM1组沙鼠肾脏组织未见明显变化。结论 STZ 200 mg/kg可成功诱导长爪沙鼠Ⅰ型糖尿病模型,在病程早期沙鼠肾脏结构和功能已经发生改变。  相似文献   

3.
目的:观察口服AdipoRon对2型糖尿病小鼠脾脏和胰腺功能的影响,为AdipoRon的临床应用提供基础资料。方法:将40只C57/BL6雄性小鼠随机分为正常对照组(NC,n=10)和造模组(n=30),并分别给予普通饲料和高脂高糖饲料喂养。4周后,造模组小鼠腹腔注射链脲佐菌素(STZ,40 mg/kg)以诱导建立2型糖尿病模型。造模成功后将糖尿病模型小鼠随机分为糖尿病模型组(DM)、高剂量AdipoRon(50 mg/kg)(DM+H)组、低剂量AdipoRon(20 mg/kg)(DM+L)组,每组10只。DM+L组和DM+H组灌胃相应浓度的AdipoRon(使用去离子水溶解AdipoRon),NC组和DM组灌胃等体积去离子水,每日灌胃1次,灌胃10 d。末次干预后禁食12 h,处死小鼠取血液、胰腺和脾脏。HE染色光镜下观察胰腺的病理改变; ELISA法检测小鼠胰腺和脾脏组织中胰岛素受体(INSR)、胰岛素受体底物1(IRS-1)和肿瘤坏死因子-α(TNF-α)蛋白质含量;小鼠脾脏系数; Western blot法检测胰腺组织中pIRS-1蛋白质水平;实时荧光定量PCR检测胰腺组织中insulin mRNA表达。结果:光镜下可见正常组小鼠胰腺组织排列紧密、饱满、胰岛体积大,DM组小鼠胰腺组织排列较为疏散、胰岛体积较小,口服AdipoRon组小鼠胰腺组织基本紧密、饱满、胰岛体积略小。与NC比较,DM组小鼠胰腺和脾脏TNF-α水平明显升高,INSR、IRS-1水平均降低,脾脏系数、胰腺p-IRS-1蛋白质水平和insulin mRNA表达均降低,均具有统计学意义(P<0.05);与DM组比较,口服AdipoRon组小鼠胰腺和脾脏TNF-α水平明显下降,INSR和IRS-1水平均升高,脾脏系数升高,DM+H组胰腺p-IRS-1蛋白质水平和insulin mRNA表达均升高(P<0.05);与DM+L组比较,DM+H组小鼠TNF-α水平明显下降,INSR和IRS-1水平均升高(P<0.05)。结论:口服AdipoRon可通过减弱糖尿病小鼠炎症反应,上调INSR表达、提高p-IRS-1水平,从而对糖尿病小鼠脾脏和胰腺组织有一定的保护作用。  相似文献   

4.
目的研究APP5肽对糖尿病模型小鼠学习记忆能力及海马神经元蛋白表达的影响。方法用链脲佐菌素诱发小鼠糖尿病模型,应用APP5肽(0.0014 mg/kg)皮下注射治疗,5周后进行Morris水迷宫试验;小鼠脑组织海马做Akt、PI3K、P-CREB、Bcl-2、Bax、CytoC免疫组织化学染色;另一部分鼠脑海马,做Bcl-2、Bax抗体蛋白免疫印记。结果(1)水迷宫试验:糖尿病模型小鼠到达站台游动时间比正常对照组延长(P〈0.01);而APP5肽皮下注射治疗组较DM组动物分别缩短(P〈0.01)。(2)神经免疫组织化学实验和Western blot:给予APP5肽糖尿病小鼠与对照组小鼠海马组织内神经元表达细胞存活相关蛋白及抗凋亡相关蛋白PI3K、Akt、P-CREB、Bcl-2阳性细胞数相似,明显高于糖尿病小鼠(P〈0.01);APP5肽给予糖尿病小鼠与对照组小鼠表达凋亡蛋白Bax、cytoC阳性细胞数相似,明显少于糖尿病小鼠(P〈0.01)。Western blot结果相同。结论糖尿病小鼠海马神经元表达细胞存活相关蛋白下降,神经元表达细胞凋亡相关蛋白增加,导致其学习记忆能力下降。APP5肽应用可以使上述蛋白恢复到接近正常,从而改善糖尿病小鼠学习记忆能力。  相似文献   

5.
该实验旨在研究经小鼠尾静脉快速注射核因子NF-E2相关因子(nuclear factor erythroid2-related factor 2,Nrf2)表达质粒对链脲佐菌素(streptozotocin,STZ)诱导的糖尿病小鼠肾小球氧化应激损伤的保护作用。采用腹腔注射STZ诱发糖尿病小鼠模型,自成模后第3天开始,尾静脉快速注射pcDNA3/mNrf2质粒。4周后收取标本,检测动物肾小球丙二醛(malondialdehyde,MDA)含量,纤维连接蛋白(fibronectin,FN)以及Nrf2、γ-谷氨酰半胱氨酸合成酶(γ-glutamylcysteine synthethase,γ-GCS)在肾小球的表达。实验结果表明,尾静脉注射可以将Nrf2表达质粒转染入小鼠肾小球。此方法可以降低糖尿病小鼠肾小球MDA浓度,减轻FN在肾小球的表达,增加Nrf2在肾小球细胞核的积聚以及γ-GCS的转录和表达。该研究证明,应用尾静脉注射Nrf2表达质粒的方法可以减轻糖尿病小鼠肾小球氧化应激损伤,减少细胞外基质(extracellular matrix,ECM)沉积,其机制部分是通过激活Nrf2-ARE信号通路而实现的。  相似文献   

6.
The aim was to explore the effects of rapamycin on autophagy and injury of podocytes in streptozocin (STZ)-induced type 1 diabetic mice, and its role in delaying progression of diabetic nephropathy. In this study, male Balb/c mice were divided into three groups: control (n = 12), STZ-induced diabetic (n = 12), and rapamycin-treated diabetic (DM + Rapa) (n = 12), which received intraperitoneal injection of rapamycin (2 mg/kg/48 h) after induction of DM. Levels of urinary albumin (UA), blood urea nitrogen, serum creatinine, and kidney weight/body weight were measured at week 12. Renal pathologic changes, number of podocytes autophagy, and organelles injury were investigated by PAS staining, transmission electron microscopy, and immunofluorescence staining, respectively. Western blot was performed to determine the expression of LC3 (a podocyte autophagy marker), phosphorylated mammalian target of rapamycin, p-p70S6K, bax, and caspase-3 protein. Podocytes count was evaluated by immunofluorescence staining and Wilms tumor 1 immunohistochemistry, and Western blot of nephrin and podocin. The results indicated that rapamycin could reduce the kidney weight/body weight and UA secretion. It could alleviate podocyte foot process fusion, glomerular basement membrane thickening, and matrix accumulation, and increase the number of autophagosomes, and LC3-expressing podocytes. Down-regulation of bax and caspase-3 protein, and up-regulation of nephrin and podocin protein were observed in the glomeruli of diabetic mice after administration of rapamycin. In conclusion, rapamycin can ameliorate renal injury in diabetic mice by increasing the autophagy activity and inhibition of apoptosis of podocytes.  相似文献   

7.
There are several reports indicating that nitric oxide (NO) plays a role in the kidney hyperfiltration seen in the early stages of diabetes mellitus (DM). Whole kidney GFR and single nephron GFR (SNGFR) have been reported to decrease after nitric oxide synthase (NOS) inhibition. To date, no direct, in vivo, quantitative NO measurements have been made within the kidney in any models of early diabetes. To assess the possible association of changes in tubular fluid nitric oxide concentrations (TF [NO]) with early diabetes, a specially modified NO electrode with a tip diameter of about 7 microm was used to measure NO in single tubules in seven rodent groups. In the Sprague-Dawley (SD) rat model, TF [NO] increased by 50% after streptozotocin (STZ) induced DM1. In the B6129G2/J mouse, control TF [NO] was more than twice the rat control value and fell by 50% after STZ treatment. In three other groups of mice-db/db (B6.Cg-m+/+Lepr(db)/J) Type II diabetic (DM2) mouse, db/m (its heterozygote), and the corresponding wild type (WT)-TF [NO] was also much higher than in the rat, and unlike the B6129G2/J STZ diabetic mouse, did not change after the onset of diabetes. Blood glucose concentrations were similar in the three diabetic groups. Accordingly, in different rodent models of diabetes, in vivo TF [NO], measured in real time, varies significantly in control animals and directionally in different models of DM1 and DM2.  相似文献   

8.
目的:观察辛伐他汀对糖尿病大鼠肾脏损伤的保护作用并探讨其可能的分子机制。方法:24只SD大鼠随机分为正常对照(NC,n=8)组和糖尿病造模组(n=16)。糖尿病造模组大鼠采用55 mg/kg链脲佐菌素(STZ)单次腹腔注射的方法建立糖尿病大鼠模型。造模成功后,糖尿病模型大鼠随机分为糖尿病(DM)组和糖尿病+辛伐他汀(DM+Sim)组。DM+Sim组大鼠每天给予辛伐他汀40 mg/kg灌胃,1次/日,连续4周。采用组织病理学方法观察肾脏的形态学改变和间质纤维化;采用分子生物学方法检测肾脏组织中内质网应激、炎性因子的表达以及细胞凋亡。结果:①与NC组相比,DM组可见肾小球和肾小管间质有明显的病理学改变,胶原纤维明显红染,呈不均匀分布;DM+Sim组形态学以及纤维化有明显改善。②DM组大鼠肾组织GRP78、p-IRE1α、NF-κB p65、MCP-1表达均高于NC组(P<0.05),DM+Sim组GRP78、p-IRE1α、NF-κB p65、MCP-1表达较DM组均下降(P<0.05)。③TUNEL法检测,NC组肾小球及肾小管存在少量凋亡的细胞,DM组肾小球及肾小管存在大量凋亡的细胞(P<0.01);与DM组比较,DM+Sim组凋亡的细胞明显减少(P<0.01)。结论:给予糖尿病大鼠辛伐他汀后,肾脏形态学以及纤维化明显改善,细胞凋亡明显减少。其对糖尿病肾脏的保护作用与抑制内质网应激和NF-κB炎症信号通路及减少肾脏细胞的凋亡有关。  相似文献   

9.
目的:观察枸杞多糖(LBP)对糖尿病大鼠视网膜神经细胞的保护作用,并探讨其作用机制。方法:18只SD大鼠随机分为3组(n=6):正常对照组(NC),糖尿病模型组(DM)和LBP治疗组(DM+LBP),通过一次性腹腔注射链脲佐菌素(STZ)的方法制备糖尿病大鼠模型。DM+LBP组按1 mg/(kg·d)剂量的LBP灌胃12周。治疗结束后检测大鼠体重、空腹血糖、视网膜活性氧簇(ROS)的生成、视网膜神经节细胞(RGCs)和无长突细胞的表达、视网膜NF-E2相关因子2(Nrf2)和血红素加氧酶-1(HO-1)的蛋白表达。结果:STZ诱导糖尿病大鼠模型造模成功率100%。与NC组相比,DM组大鼠体重明显降低、空腹血糖值升高、ROS的生成明显增加、RGCs和无长突细胞的数量均明显减少(P<0.01)。与DM组相比,LBP治疗组大鼠体重升高、血糖降低、ROS的生成减少、RGCs和无长突细胞的数量均明显增加(P<0.01或P<0.05);视网膜Nrf2和HO-1的蛋白表达均明显升高(P<0.01)。结论:LBP能改善糖尿病大鼠视网膜的氧化应激状态,对糖尿病大鼠视网膜神经细胞有一定的保护效应,其作用机制可能与其激活Nrf2/HO-1信号通路有关。  相似文献   

10.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   

11.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. To date, the molecular mechanisms of DN remain largely unclear. The present study aimed to identify and characterize novel proteins involved in the development of DN by a proteomic approach. Proteomic analysis revealed that 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2), the key enzyme in ketogenesis, was increased fourfold in the kidneys of type 2 diabetic db/db mice. Consistently, the activity of HMGCS2 in kidneys and 24-h urinary excretion of the ketone body β-hydroxybutyrate (β-HB) were significantly increased in db/db mice. Immunohistochemistry, immunofluorescence, and real-time PCR studies further demonstrated that HMGCS2 was highly expressed in renal glomeruli of db/db mice, with weak expression in the kidneys of control mice. Because filtered ketone bodies are mainly reabsorbed in the proximal tubules, we used RPTC cells, a rat proximal tubule cell line, to examine the effect of the increased level of ketone bodies. Treating cultured RPTC cells with 1 mM β-HB significantly induced transforming growth factor-β1 expression, with a marked increase in collagen I expression. β-HB treatment also resulted in a marked increase in vimentin protein expression and a significant reduction in E-cadherin protein levels, suggesting an enhanced epithelial-to-mesenchymal transition in RPTCs. Collectively, these findings demonstrate that diabetic kidneys exhibit excess ketogenic activity resulting from increased HMGCS2 expression. Enhanced ketone body production in the diabetic kidney may represent a novel mechanism involved in the pathogenesis of DN.  相似文献   

12.
This study was undertaken to investigate the effect of azuki bean (Vigna angularis) seed coats (ABSC), which contain polyphenols, on the infiltration of macrophages and the progression of diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. The diabetic rats were divided into three groups with 0% (commercial diet), 0.1% and 1.0% ABSC diets. The vehicle-injected controls were given a commercial diet. At 10 weeks, the macrophage kinetics, the degree of fibrosis in glomeruli and mRNA expression for monocyte chemoattractant protein-1 (MCP-1) were examined. There was no difference in plasma glucose levels between diabetic rats treated with and without ABSC. The plasma levels of malondialdehyde (MDA) in the ABSC-treated diabetic rats were significantly lower than those in the untreated diabetic rats. Histopathologically, the percentage of the fibrotic areas stained by Sirius red stain in the glomeruli in the ABSC-treated diabetic rats was lower than in the untreated diabetic rats. ED1-positive macrophages in the glomeruli and tubulointerstitium in the untreated diabetic rats showed a significant increase in number compared with the controls. In contrast, the number of macrophages in the ABSC-treated diabetic rats was smaller than that in untreated diabetic rats. MCP-1 mRNA expression, estimated by real-time quantitative RT-PCR, was increased 2.5-fold in the untreated diabetic rat kidney, while a lower level was observed in the ABSC-treated diabetic rats. In conclusion, our results suggest that ABSC treatments suppress the increased number of infiltrating macrophages and MCP-1 mRNA expression, and attenuated the glomerular expansion in STZ-induced rat diabetic nephropathy.  相似文献   

13.
Estrogen is thought to protect against the development of chronic kidney disease, and menopause increases the development and severity of diabetic kidney disease. In this study, we used streptozotocin (STZ) to induce diabetes in the 4-vinylcyclohexene diepoxide (VCD)-treated mouse model of menopause. DNA microarrays were used to identify gene expression changes in the diabetic kidney postmenopause. An ANOVA model, CARMA, was used to isolate the menopause effect between two groups of diabetic mice, diabetic menopausal (STZ/VCD) and diabetic cycling (STZ). In this diabetic study, 8,864 genes of the possible 15,600 genes on the array were included in the ANOVA; 99 genes were identified as demonstrating a >1.5-fold up- or downregulation between the STZ/VCD and STZ groups. We randomly selected genes for confirmation by real-time PCR; midkine (Mdk), immediate early response gene 3 (IEX-1), mitogen-inducible gene 6 (Mig6), and ubiquitin-specific protease 2 (USP2) were significantly increased in the kidneys of STZ/VCD compared with STZ mice. Western blot analysis confirmed that Mdk and IEX-1 protein abundance was significantly increased in the kidney cortex of STZ/VCD compared with STZ mice. In a separate study, DNA microarrays and CARMA analysis were used to identify the effect of menopause on the nondiabetic kidney; VCD-treated mice were compared with cycling mice. Of the possible 15,600 genes on the array, 9,142 genes were included in the ANOVA; 20 genes were identified as demonstrating a >1.5-fold up- or downregulation; histidine decarboxylase and vanin 1 were among the genes identified as differentially expressed in the postmenopausal nondiabetic kidney. These data expand our understanding of how hormone status correlates with the development of diabetic kidney disease and identify several target genes for further studies.  相似文献   

14.
Devaraj S  Tobias P  Jialal I 《Cytokine》2011,55(3):441-445
Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4(-/-) mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4(-/-) STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4(-/-) +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4(-/-) +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.  相似文献   

15.
Abstract

We examined using immunohistochemistry the distribution of leptin in kidney tissues of melatonin treated, streptozotocin (STZ) diabetic rats. The animals were divided into five groups: control, sham, melatonin-treated, diabetic and melatonin-treated diabetic. Kidney sections were prepared and stained with hematoxylin and eosin, and Crossman's triple staining for histological examination. The immunohistochemical localization of leptin in the kidney tissue was determined using the streptavidin-biotin-peroxidase method. We determined that on days 7 and 14, the leptin immunoreactivity of the diabetic and melatonin-treated diabetic groups was weaker than for the other groups. Weak immunoreactivity was found in the proximal and distal tubules of the kidney in the diabetic and melatonin-treated diabetic groups on days 7 and 14, and strong immunoreactivity was found in the control, sham and melatonin groups. Melatonin application had no significant effect on leptin production in the kidney tissues of diabetic rats.  相似文献   

16.
17.
To investigate whether ANG II type 1 (AT(1)) receptor blockade could protect kidney mitochondria in streptozotocin-induced Type 1 diabetes, we treated 8-wk-old male Sprague-Dawley rats with a single streptozotocin injection (65 mg/kg ip; STZ group), streptozotocin and drinking water containing either losartan (30 mg.kg(-1).day(-1); STZ+Los group) or amlodipine (3 mg.kg(-1).day(-1); STZ+Amlo group), or saline (intraperitoneally) and pure water (control group). Four-month-long losartan or amlodipine treatments started 30 days before streptozotocin injection to improve the antioxidant defenses. The number of renal lesions, plasma glucose and lipid levels, and proteinuria were higher and creatinine clearance was lower in STZ and STZ+Amlo compared with STZ+Los and control groups. Glycemia was higher in STZ+Los compared with control. Blood pressure, basal mitochondrial membrane potential and mitochondrial pyruvate content, and renal oxidized glutathione levels were higher and NADH/cytochrome c oxidoreductase activity was lower in STZ compared with the other groups. In STZ and STZ+Amlo groups, mitochondrial H(2)O(2) production rate was higher and uncoupling protein-2 content, cytochrome c oxidase activity, and renal glutathione level were lower than in STZ+Los and control groups. Mitochondrial nitric oxide synthase activity was higher in STZ+Amlo compared with the other groups. Mitochondrial pyruvate content and H(2)O(2) production rate negatively contributed to electron transfer capacity and positively contributed to renal lesions. Uncoupling protein-2 content negatively contributed to mitochondrial H(2)O(2) production rate and renal lesions. Renal glutathione reduction potential positively contributed to mitochondria electron transfer capacity. In conclusion, AT(1) blockade protects kidney mitochondria and kidney structure in streptozotocin-induced diabetes independently of blood pressure and glycemia.  相似文献   

18.
目的:探讨下丘脑室旁核(hypothalamic paraventricular nucleus,PVN)注射GLP-1(胰高血糖素样肽-1)对糖尿病大鼠胃排空的影响及机制。方法:30只Wistar大鼠随机分为正常对照组(NC组)、糖尿病组(DM组)和GLP-1干预组(GLP-1组),每组各10只。DM组和GLP-1组腹腔注射链脲佐菌素,三组大鼠均PVN区埋置套管,恢复7d,GLP-1组微量注射0.5μg/0.5μl的GLP-1,NC组和DM组大鼠PVN区微量注射等体积生理盐水。甲基纤维素-酚红灌胃法检测胃排空;半定量RT-PCR检测大鼠下丘脑GLP-1RmRNA的表达。结果:DM组胃排空率较NC组明显升高(P<0.05),GLP-1组胃排空明显低于DM组(P<0.05),GLP-1组和NC组差异无统计学意义(P>0.05)。GLP-1组下丘脑GLP-1RmRNA的表达明显高于DM组和NC组(P<0.05),并与胃排空率成负相关(P<0.05)。DM组和NC组差异无统计学意义(P>0.05)。结论:PVN区注射GLP-1可以抑制糖尿病大鼠早期胃排空加速,作用机制可能和促进下丘脑GLP-1受体表达有关。  相似文献   

19.
目的:神经病理性痛是糖尿病最常见的并发症之一,本课题旨在探讨姜黄素对糖尿病大鼠痛觉过敏的影响及其分子机制。方法:30只雄性SD大鼠随机分为对照组、糖尿病组和姜黄素治疗纽,模型纽和姜黄素治疗组利用腹腔注射链脲佐菌素(Streptozotocin,STZ)制备大鼠糖尿病模型,定期检测大鼠血糖、饮食、体重等变化,治疗组于STZ注射2wk后定期灌服姜黄素,分别在2wk和4wk后检测各组大鼠热痛敏和机械痛敏反应,在第4wk利用ELISA分别检测各组大鼠脊髓背角TNF-α表达变化。结果:STZ注射组大鼠2周后出现血糖〉14mol/L,并且该模型具有高血糖、体重增长缓慢、多饮多食多尿的特点,符合Ⅰ型糖尿病特征,痛行为测试结果显示糖尿病大鼠出现痛觉过敏,经过给予姜黄素灌服治疗后,痛觉过敏有所减轻,ELISA分析结果表明糖尿病大鼠脊髓背角TNF-α表达升高,经过姜黄素治疗后TNF-α表达有所下降。结论:成功制备STZ-型糖尿病大鼠模型,经过姜黄素治疗可以减轻糖尿病引起的疼痛过敏,姜黄素对糖尿病疼痛的治疗作用可能是通过降低大鼠脊髓背角TNF-α表达实现的。  相似文献   

20.
《Free radical research》2013,47(12):1205-1213
Abstract

This study investigated the effects of lignin-derived lignophenols (LPs) on the oxidative stress and infiltration of macrophages in the kidney of streptozotocin (STZ)-induced diabetic rats. The diabetic rats were divided into four groups with 0%, 0.11%, 0.33% and 1.0% LP diets. The vehicle-injected controls were given a commercial diet. At 5 weeks, superoxide (O2?) production, macrophage kinetics, the degree of fibrosis in glomeruli and mRNA expression for monocyte chemoattractant protein-1 (MCP-1) were examined. The NADPH-stimulated O2? levels in the kidney of the diabetic rats treated with 1.0% LP were significantly lower than those in untreated diabetic rats. The number of macrophages, levels of MCP-1 mRNA expression and degree of glomerular fibrosis increased in untreated LP and these levels were significantly lower in 1.0%LP-treated rats. The results suggested that LPs suppress the excess oxidative stress, the infiltration and activation of macrophages and the glomerular expansion in STZ-induced diabetic kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号