首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized comparatively the subcellular distributions of caveolins-1 and -2, their interactions and their roles in caveolar formation in polarized epithelial cells. In Fischer rat thyroid (FRT) cells, which express low levels of caveolin-2 and no caveolin-1, caveolin-2 localizes exclusively to the Golgi complex but is partially redistributed to the plasma membrane upon co-expression of caveolin-1 by transfection or by adenovirus-mediated transduction. In Madin-Darby canine kidney (MDCK) cells, which constitutively express both caveolin-1 and -2, caveolin-2 localized to both the Golgi complex and to the plasma membrane, where it co-distributed with caveolin-1 in flat patches and in caveolae. In FRT cells, endogenous or overexpressed caveolin-2 did not associate with low density Triton insoluble membranes that floated in sucrose density gradients but was recruited to these membranes when co-expressed together with caveolin-1. In MDCK cells, both caveolin-1 and caveolin-2 associated with low density Triton-insoluble membranes. In FRT cells, transfection of caveolin-1 promoted the assembly of plasma membrane caveolae that localized preferentially (over 99%) to the basolateral surface, like constitutive caveolae of MDCK cells. In contrast, as expected from its intracellular distribution, endogenous or overexpressed caveolin-2 did not promote the assembly of caveolae; rather, it appeared to promote the assembly of intracellular vesicles in the peri-Golgi area. The data reported here demonstrate that caveolin-1 and -2 have different and complementary subcellular localizations and functional properties in polarized epithelial cells and suggest that the two proteins co-operate to carry out specific as yet unknown tasks between the Golgi complex and the cell surface.  相似文献   

2.
Caveolins have been identified as key components of caveolae, specialized cholesterol-enriched raft domains visible as small flask-shaped invaginations of the plasma membrane. In polarized MDCK cells caveolin-1 and -2 are found together on basolateral caveolae whereas the apical membrane, where only caveolin-1 is present, lacks caveolae. Expression of a caveolin mutant prevented the formation of the large caveolin-1/-2 hetero-oligomeric complexes, and led to intracellular retention of caveolin-2 and disappearance of caveolae from the basolateral membrane. Correspondingly, in MDCK cells over-expressing caveolin-2 the basolateral membrane exhibited an increased number of caveolae. These results indicate the involvement of caveolin-2 in caveolar biogenesis.  相似文献   

3.
The mammalian caveolin gene family consists of caveolins-1, -2, and -3. The expression of caveolin-3 is muscle-specific. In contrast, caveolins-1 and -2 are co-expressed, and they form a hetero-oligomeric complex in many cell types, with particularly high levels in adipocytes, endothelial cells, and fibroblasts. These caveolin hetero-oligomers are thought to represent the functional assembly units that drive caveolae formation in vivo. Here, we investigate the mechanism by which caveolins-1 and -2 form hetero-oligomers. We reconstituted this reciprocal interaction in vivo and in vitro using a variety of complementary approaches, including the generation of glutathione S-transferase fusion proteins and synthetic peptides. Taken together, our results indicate that the membrane-spanning domains of both caveolins-1 and -2 play a critical role in mediating their ability to interact with each other. This is the first demonstration that these unusual membrane-spanning regions found in the caveolin family play a specific role in protein-protein interactions.  相似文献   

4.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cell types (cardiac and skeletal). Autosomal dominant limb girdle muscular dystrophy (LGMD-1C) in humans is due to mutations within the caveolin-3 gene: (i) a 9-base pair microdeletion that removes three amino acids within the caveolin scaffolding domain (DeltaTFT) or (ii) a missense mutation within the membrane spanning domain (P --> L). The molecular mechanisms by which these two mutations cause muscular dystrophy remain unknown. Here, we investigate the phenotypic behavior of these caveolin-3 mutations using heterologous expression. Wild type caveolin-3 or caveolin-3 mutants were transiently expressed in NIH 3T3 cells. LGMD-1C mutants of caveolin-3 (DeltaTFT or P --> L) were primarily retained at the level of a perinuclear compartment that we identified as the Golgi complex in double-labeling experiments, while wild type caveolin-3 was efficiently targeted to the plasma membrane. In accordance with these observations, caveolin-3 mutants formed oligomers of a much larger size than wild type caveolin-3 and were excluded from caveolae-enriched membrane fractions as seen by sucrose density gradient centrifugation. In addition, these caveolin-3 mutants were expressed at significantly lower levels and had a dramatically shortened half-life of approximately 45-60 min. However, caveolin-3 mutants were palmitoylated to the same extent as wild type caveolin-3, indicating that targeting to the plasma membrane is not required for palmitoylation of caveolin-3. In conclusion, we show that LGMD-1C mutations lead to formation of unstable high molecular mass aggregates of caveolin-3 that are retained within the Golgi complex and are not targeted to the plasma membrane. Consistent with its autosomal dominant form of genetic transmission, we demonstrate that LGMD-1C mutants of caveolin-3 behave in a dominant-negative fashion, causing the retention of wild type caveolin-3 at the level of the Golgi. These data provide a molecular explanation for why caveolin-3 levels are down-regulated in patients with this form of limb girdle muscular dystrophy (LGMD-1C).  相似文献   

5.
Results from our previous study suggest that cyclooxygenase-2 (COX-2) induced by phorbol 12-myristate 13-acetate (PMA) may be localized to caveolae-like structures (Liou, J.-Y., Shyue, S.-K., Tsai, M.-J., Chung, C.-L., Chu, K.-Y., and Wu, K. K. (2000) J. Biol. Chem. 275, 15314-15320). In this study, we determined subcellular localization of COX-2 and caveolin-1 by confocal microscopy. COX-2 in human foreskin fibroblasts stimulated by PMA (100 nm) or interleukin-1beta (1 ng/ml) for 6 h was localized to plasma membrane in addition to endoplasmic reticulum and nuclear envelope. Caveolin-1 was localized to plasma membrane, and image overlay showed colocalization of COX-2 with caveolin-1. This was confirmed by the presence of COX-2 and caveolin-1 in the detergent-insoluble membrane fraction of cells stimulated by PMA. Immunoprecipitation showed complex formation of COX-2 with caveolin-1 in a time-dependent manner. A larger quantity of COX-2 was complexed with caveolin-1 in PMA-treated than in interleukin-1beta-treated cells. Purified COX-2 complexed with glutathione S-transferase-fused caveolin-1, which was not inhibited by the scaffolding domain peptide. Caveolin-1-bound COX-2 was catalytically active, and its activity was not inhibited by the scaffolding domain peptide. These results suggest that COX-2 induced by PMA and interleukin-1beta is colocalized with caveolin-1 in the segregated caveolae compartment. Because caveolae are rich in signaling molecules, this COX-2 compartment may play an important role in diverse pathophysiological processes.  相似文献   

6.
Caveolin-2 is the least well studied member of the caveolin gene family. It is believed that caveolin-2 is an "accessory protein" that functions in conjunction with caveolin-1. At the level of the ER, caveolin-2 interacts with caveolin-1 to form a high molecular mass hetero-oligomeric complex that is targeted to lipid rafts and drives the formation of caveolae. However, caveolin-2 is not required for caveolae formation, implying that it may fulfill some unknown regulatory role. Here, we present the first evidence that caveolin-2 is a phosphoprotein. We show that caveolin-2 undergoes Src-induced phosphorylation on tyrosine 19. To study this phosphorylation event in vivo, we generated a novel phospho-specific antibody probe that only recognizes phosphocaveolin-2 (Tyr(P)(19)). We then used NIH-3T3 cells stably overexpressing c-Src to examine the localization and biochemical properties of phosphocaveolin-2 (Tyr(P)(19)). Our results indicate that phosphocaveolin-2 (Tyr(P)(19)) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. Instead, phosphocaveolin-2 (Tyr(P)(19)) behaves as a monomer/dimer in velocity gradients. Thus, we conclude that the tyrosine phosphorylation of caveolin-2 (Tyr(P)(19)) may function as a signal that is recognized by the cellular machinery to induce the dissociation of caveolin-2 from caveolin-1 oligomers. We also demonstrate that (i) insulin-stimulation of adipocytes and (ii) integrin ligation of endothelial cells can both induce the tyrosine phosphorylation of caveolin-2 (Tyr(P)(19)). During integrin ligation, phosphocaveolin-2 (Tyr(P)(19)) co-localizes with activated FAK at focal adhesions. Thus, phosphocaveolin-2 (Tyr(P)(19)) may function as a docking site for Src homology domain-2 (SH2) domain containing proteins during signal transduction. In support of this notion, we identify several SH2 domain containing proteins, namely c-Src, NCK, and Ras-GAP, that interact with caveolin-2 in a phosphorylation-dependent manner. Furthermore, our co-immunoprecipitation experiments show that caveolin-2 and Ras-GAP are constitutively associated in c-Src expressing NIH-3T3 cells, but not in untransfected NIH-3T3 cells.  相似文献   

7.
Bruton's tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here that Btk interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. In addition, we found that native Bmx, another member of the Tec family kinases, is associated with endogenous caveolin-1 in primary human umbilical vein endothelial cells. Second, in transient transfection assays, expression of caveolin-1 leads to a substantial reduction in the in vivo tyrosine phosphorylation of both Btk and its constitutively active form, E41K. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82--101) functionally suppressed the autokinase activity of purified recombinant Btk protein. Third, we demonstrate that mouse splenic B-lymphocytes express substantial amounts of caveolin-1. Interestingly, caveolin-1 was found to be constitutively phosphorylated on tyrosine 14 in these cells. The expression of caveolin-1 in B-lymphocytes and its interaction with Btk may have implications not only for B cell activation and signaling, but also for antigen presentation.  相似文献   

8.
Multiple domains in caveolin-1 control its intracellular traffic   总被引:6,自引:0,他引:6  
Caveolin-1 is an integral membrane protein of caveolae that is thought to play an important role in both the traffic of cholesterol to caveolae and modulating the activity of multiple signaling molecules at this site. The molecule is synthesized in the endoplasmic reticulum, transported to the cell surface, and undergoes a poorly understood recycling itinerary. We have used mutagenesis to determine the parts of the molecule that control traffic of caveolin-1 from its site of synthesis to the cell surface. We identified four regions of the molecule that appear to influence caveolin-1 traffic. A region between amino acids 66 and 70, which is in the most conserved region of the molecule, is necessary for exit from the endoplasmic reticulum. The region between amino acids 71 and 80 controls incorporation of caveolin-1 oligomers into detergent-resistant regions of the Golgi apparatus. Amino acids 91-100 and 134-154 both control oligomerization and exit from the Golgi apparatus. Removal of other portions of the molecule has no effect on targeting of newly synthesized caveolin-1 to caveolae. The results suggest that movement of caveolin-1 among various endomembrane compartments is controlled at multiple steps.  相似文献   

9.
Caveolin-3 the muscle-specific caveolin isoform, acts like the more ubiquitously expressed caveolin-1 to sculpt caveolae, specialized membrane microdomains that serve as platforms to organize signal transduction pathways. Caveolin-2 is a structurally related isoform that alone does not drive caveolae biogenesis; rather, caveolin-2 cooperates with caveolin-1 to form caveolae in nonmuscle cells. Although caveolin-2 might be expected to interact in an fashion analogous to that of caveolin-3, it generally has not been detected in cardiomyocytes. This study shows that caveolin-2 and caveolin-3 are detected at low levels in ventricular myocardium and increase dramatically with age or when neonatal cardiomyocytes are placed in culture. In contrast, flotillins (caveolin functional homologs) are expressed at relatively constant levels in these preparations. In neonatal cardiac cultures, caveolin-2 and -3 expression is not influenced by thyroid hormone (a postnatal regulator of other cardiac gene products). The further evidence that caveolin-2 coimmunoprecipitates with caveolin-3 and floats with caveolin-3 by isopycnic centrifugation in cardiomyocyte cultures suggests that caveolin-2 may play a role in caveolae biogenesis and influence cardiac muscle physiology.  相似文献   

10.
Caveolae are flask-shaped invaginations of the plasma membrane formed by the association of caveolin proteins with lipid rafts. In endothelial cells, caveolae function as signal transduction centers controlling NO synthesis and mechanotransduction. We now provide evidence that the endothelial volume-regulated anion channel (VRAC) is also under the control of the caveolar system. When calf pulmonary artery endothelial (CPAE) cells were transfected with caveolin-1 Delta1-81 (deletion of amino acids 1 to 81), activation of VRAC by hypotonic cell swelling was strongly impaired. Concomitantly, caveolin-1 Delta1-81 disturbed the formation of caveolin-1 containing lipid rafts as evidenced by sucrose density gradient centrifugation. In nontransfected cells, endogenous caveolin-1 typically associated with low-density, detergent-resistant lipid rafts. However, transient expression of caveolin-1 Delta1-81 caused a redistribution of endogenous caveolin-1 to high-density, detergent-soluble membrane fractions. We therefore conclude that the interaction between caveolin-1 and detergent-resistant lipid rafts is an important prerequisite for endothelial VRAC activity.  相似文献   

11.
Caveolae, a class of cholesterol-rich lipid rafts, are smooth invaginations of the plasma membrane whose formation in nonmuscle cells requires caveolin-1 (Cav1). The recent demonstration that Cav1-associated cavin proteins, in particular PTRF/cavin-1, are also required for caveolae formation supports a functional role for Cav1 independently of caveolae. In tumor cells deficient for Golgi β-1,6N-acetylglucosaminyltransferase V (Mgat5), reduced Cav1 expression is associated not with caveolae but with oligomerized Cav1 domains, or scaffolds, that functionally regulate receptor signaling and raft-dependent endocytosis. Using subdiffraction-limit microscopy, we show that Cav1 scaffolds are homogenous subdiffraction-limit sized structures whose size distribution differs from that of Cav1 in caveolae expressing cells. These cell lines displaying differing Cav1/caveolae phenotypes are effective tools for probing the structure and composition of caveolae. Using stable isotope labeling by amino acids in cell culture, we are able to quantitatively distinguish the composition of caveolae from the background of detergent-resistant membrane proteins and show that the presence of caveolae enriches the protein composition of detergent-resistant membrane, including the recruitment of multiple heterotrimeric G-protein subunits. These data were further supported by analysis of immuno-isolated Cav1 domains and of methyl-β-cyclodextrin-disrupted detergent-resistant membrane. Our data show that loss of caveolae results in a dramatic change to the membrane raft proteome and that this change is independent of Cav1 expression. The proteomics data, in combination with subdiffraction-limit microscopy, indicates that noncaveolar Cav1 domains, or scaffolds are structurally and functionally distinct from caveolae and differentially impact on the molecular composition of lipid rafts.  相似文献   

12.
We identified a splice variant of mouse caveolin-2 mRNA having an intronic sequence in place of the third exon (Deltaex3). The entire sequence of full-length (FL) and Deltaex3 caveolin-2 mRNA was determined; their sizes were 2490 and 973 bp, respectively. The Deltaex3 mRNA encoded a putative isoform lacking the C-terminal 49 amino acids of the authentic caveolin-2. The expression level of Deltaex3 was lower than that of FL mRNA, but considerable in some culture cells and tissues. The isoform lacking the C-terminus localized to the endoplasmic reticulum, while the authentic caveolin-2 was distributed to the Golgi and the plasma membrane along with caveolin-1. The result confirmed the necessity of the C-terminal domain of caveolin-2 for the caveolar localization, and showed the existence of a novel caveolin-2 isoform, which is not recruited to caveolae even in the presence of caveolin-1.  相似文献   

13.
Caveolin, a 20-24 kDa integral membrane protein, is a principal component of caveolar domains. Caveolin-1 is expressed predominantly in endothelial cells, fibroblasts, and adipocytes, while the expression of caveolin-3 is confined to muscle cells. However, their localization in various muscles has not been well documented. Using double-immunofluorescence labeling and confocal laser microscopy, we examined the localization of caveolins-1 and 3 in adult monkey skeletal, cardiac and uterine smooth muscles and the co-immunolocalization of these caveolins with dystrophin, which is a product of the Duchenne muscular dystrophy gene. In the skeletal muscle tissue, caveolin-3 was localized along the sarcolemma except for the transverse tubules, and co-immunolocalized with dystrophin, whereas caveolin-1 was absent except in the blood vessels of the muscle tissue. In cardiac muscle cells, caveolins-1 and -3 and dystrophin were co-immunolocalized on the sarcolemma and transverse tubules. In uterine smooth muscle cells, caveolin-1, but not caveolin-3, was co-immunolocalized with dystrophin on the sarcolemma.  相似文献   

14.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

15.
Jung NH  Kim HP  Kim BR  Cha SH  Kim GA  Ha H  Na YE  Cha YN 《IUBMB life》2003,55(9):525-532
The interaction of heme oxygenase-1 (HO-1) and caveolin in the cultured mouse mesangial cells (MMC) was investigated. In normal MMCs, high levels of caveolin-2 and low level of caveolin-1 at mRNA and protein level were observed without any detectable expression of caveolin-3. Upon treating the MMCs either with cadmium (Cd) or spermine NONOate (SPER/NO), expression of HO-1 mRNA and protein was increased. Caveolae rich membranous fractions from the MMCs treated with Cd or SPER/NO contained both HO-1 and caveolin-1 or caveolin-2. The experiments of immuno-precipitation showed complex formation between the HO-1 and caveolin-1 or caveolin-2 in the Cd treated MMCs. Confocal microscopic results also support co-localization of HO-1 and caveolin-1 or caveolin-2 at the plasma membrane. Co-localization of caveolins with HO-1 in caveolae suggested that caveolin could also play an important role in regulating the function of HO-1.  相似文献   

16.
When cells are migrating, caveolin-1, the principal protein component of caveolae, is excluded from the leading edge and polarized at the cell rear. The dynamic feature depends on a specific sequence motif that directs intracellular trafficking of the protein. Deletion mutation analysis revealed a putative polarization domain at the N terminus of caveolin-1, between amino acids 32-60. Alanine substitution identified a minimal sequence of 10 residues ((46)TKEIDLVNRD(55)) necessary for caveolin-1 rear polarization. Interestingly, deletion of amino acids 1-60 did not prevent the polarization of caveolin-1 in human umbilical vein endothelial cells or wild-type mouse embryonic fibroblasts because of an interaction of Cav(61-178) mutant with endogenous caveolin-1. Surprisingly, expression of the depolarization mutant in caveolin-1 null cells dramatically impeded caveolae formation. Furthermore, knockdown of caveolae formation by methyl-beta-cyclodextrin failed to prevent wild-type caveolin-1 rear polarization. Importantly, genetic depletion of caveolin-1 led to disoriented migration, which can be rescued by full-length caveolin-1 but not the depolarization mutant, indicating a role of caveolin-1 polarity in chemotaxis. Thus, we have identified a sequence motif that is essential for caveolin-1 rear polarization and caveolae formation.  相似文献   

17.
Cha SH  Jung NH  Kim BR  Kim HW  Kwak JO 《IUBMB life》2004,56(4):221-227
The purpose of this study was to confirm protein-protein interaction between cyclooxygenase-1 (COX-1) and caveolins. The interaction of cyclooxygenase-1 and caveolins in the cultured human embryonic kidney (HEK 293) cells was investigated using immuno-precipitation and Western blot analysis. In HEK 293 cells, high levels of caveolin-2 and low level of caveolin-1 at mRNA and protein level were observed without any detectable expression of caveolin-3. Caveolae rich membranous fractions from the HEK 293 cells contained both COX-1 and caveolin-1 or caveolin-2 in same fractions. The experiments of immuno-precipitation showed complex formation between the COX-1 and caveolin-1 or caveolin-2 in the HEK 293 cells. Confocal microscopic results also support co-localization of COX-1 and caveolin-1 or caveolin-2 at the plasma membrane. Co-localization of caveolins with cylooxygenase-1 in caveolae suggested that caveolin would play an important role in regulating the function of COX-1.  相似文献   

18.
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.  相似文献   

19.
Expression of caveolin-1 enhances cholesterol efflux in hepatic cells   总被引:7,自引:0,他引:7  
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains (caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.  相似文献   

20.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号