首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

2.
The Ca pump was reconstituted from the purified sarcoplasmic reticulum ATPase and excess soybean phospholipids by the freeze-thaw sonication procedure in the presence of cholate. In the absence of Ca precipitating agents, the reconstituted proteoliposomes accumulated Ca2+ at an initial rate of up to 0.7 mumol/mg per min at 25 degrees C, and a value of 1.54 was obtained for the coupling ratio between Ca uptake and Ca2+-dependent ATPase activities. The proteoliposomes were mainly unilamellar vesicles but were heterogeneous with respect to their size. When reconstituted at a lipid/protein ratio of 40, proteoliposomes had a buoyant density of about 1.04 and their average internal volume was 1.4-1.6 microliters/mg of phospholipids. More than 95% of the ATPase was incorporated randomly into these proteoliposomes and the fraction of proteoliposomes that represented about 50% of the total intravesicular isotope space contained right-side-out oriented enzyme. 86Rb efflux from the 86Rb-loaded proteoliposomes was found to be slow even at 25 degrees C. Therefore, the proteoliposomes prepared by the present simple method should be useful for the study of the side-specific interaction of ions such as alkali metal cations with the sarcoplasmic reticulum Ca pump.  相似文献   

3.
1. During purification of the Ca2+ATPase from sarcoplasmic reticulum of rabbit muscle, different fractions with similar Ca2+ATPase activity were found to vary greatly in their ability to catalyze 45Ca2+ translocation in reconstituted liposomal systems. 2. A heat-stable fraction isolated from the fraction most active in Ca2+ translocation enhanced several-fold the Ca2+ translocation rate of the least active fraction. It also increased the ratio of Ca2+ translocation to ATP hydrolysis over 5-fold. The properties of the coupling factor resemble those of the proteolipid previously described by MacLennan et al. (MACLENNAN, D.H., YIP, C. C., ILES, G. H., and SEAMAN, P. (1972) Cold Spring Harbor Symp. Quant. Biol. 37, 469-478). 3. When the heat-stable factor was added to either sarcoplasmic reticulum fragments or to liposomes after, rather than before, reconstitution, it acted as an ionophore abolishing Ca2+ translocation.  相似文献   

4.
A detailed functional characterization of reconstituted sarcoplasmic reticulum (SR) vesicles with similar lipid content as normal SR was obtained by studies of ATPase activity and calcium transport in transient state, steady state, and equilibrium conditions. For this purpose, enzyme phosphorylation with ATP, hydrolytic activity, calcium transport, phosphorylation with Pi, and ATP synthesis by reversal of the pump were measured, and utilized to demonstrate function and orientation of catalytic sites. The preparations used in these studies displayed the highest activity reported for reconstituted sarcoplasmic reticulum systems. The rates of phosphoenzyme formation from ATP and hydrolysis as well as steady state levels matched the values obtained with normal SR vesicles. Calcium transport and repeated cycles of ATP synthesis by reversal of the pump were also obtained. However, the efficiency of transport and ATP synthesis from a Ca2+ gradient was approximately three times lower than in native vesicles. This deficiency could not be attributed to passive calcium leak from the reconstituted vesicles but, in part, can be explained by the bidirectional alignment of the calcium pump in reconstituted SR. It is suggested that vectorial transport requires a more complex level of protein structure than that for sustaining simple ATPase activity. Time resolution of the phosphorylation reaction by rapid quench methods can be used to estimate the orientation of the calcium pump in the membrane. Such studies indicate that the calcium pump protein is largely bidirectionally oriented in reconstituted SR vesicles.  相似文献   

5.
Pretreatment of sarcoplasmic membranes with acetic or maleic anhydrides, which interact principally with amino groups, resulted in an inhibition of Ca2+ accumulation and ATPase activity. The presence of ATP, ADP or adenosine 5'-[beta, gamma-imido]triphosphate in the modification medium selectively protected against the inactivation of ATPase activity by the anhydride but did not protect against the inhibition of Ca2+ accumulation. Acetic anhydride modification in the presence of ATP appeared to increase specifically the permeability of the sarcoplasmic reticulum membrane to Ca2+ but not to sucrose, Tris, Na+ or Pi. The chemical modification stimulated a rapid release of Ca2+ from sarcoplasmic reticulum vesicles passively or actively loaded with calcium, from liposomes reconstituted with the partially purified ATPase fraction but not from those reconstituted with the purified ATPase. The inactivation of Ca2+ accumulation by acetic anhydride (in the presence of ATP) was rapid and strongly pH-dependent with an estimated pK value above 8.3 for the reactive group(s). The negatively charged reagents pyridoxal 5-phosphate and trinitrobenzene-sulphonate, which also interact with amino groups, did not stimulate Ca2+ release. Since these reagents do not penetrate the sarcoplasmic reticulum membranes, it is proposed that Ca2+ release is promoted by modification of internally located, positively charged amino group(s).  相似文献   

6.
The influence of phospholipid environment upon the mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.6.1.3]) was studied by electron spin resonance spectroscopy in native and reconstituted sarcoplasmic reticulum membranes. Fragmented sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length or with 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidinooxyl, and the phospholipids were exchanged for dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine. With short-chain maleimide or iodoacetamide spin labels, the spectrum of the protein-bound label reflected the change in microenvironment caused by replacement of endogenous phospholipids with dipalmitoylphosphatidylcholine as a decrease in mobility. In contrast, after labeling with long-chain maleimide derivatives, there were no noticeable differences in the spectra before and after substitution with dipalmitophatidylcholine. Replacement of endogenous phospholipids with dioleoylphosphatidylcholine did not affect the spectra. The data indicate that increased viscosity in the environment of Ca2+-transport ATPase produced by replacement of sarcoplasmic reticulum lipids with dipalmitoylphosphatidylcholine reduces the mobility of short-chain maleimide spin labels covalently attached to the Ca2+-transport ATPase polypeptide.  相似文献   

7.
During uptake of Ca2+ by rabbit sarcoplasmic reticulum, about 1 mumol of 32Pi was taken up per mumol 45Ca2+ transported. The uptake of Pi was dependent on external Ca2+, Mg2+ and ATP. Intravesicular Ca2+ did not substitute for external Ca2+. In contrast to the accumulation of Ca2+ which was abolished by the ionophore A23187, the uptake of Pi continued to take place provided sufficient Ca2+ was present in the medium. Thus, a Ca2+ gradient did not seem to be required. Similar observations were made with proteoliposomes reconstituted with membrane preparations of sarcoplasmic reticulum and soybean phospholipids. However, when purified Ca2+ -ATPase was used for reconstitution, there was ATP-dependent Ca2+ uptake but no ATP-dependent Pi transport was observed. These data show that the mechanism of Pi transport cannot be a passive movement in response to a Ca2+ gradient but appears to be catalyzed by a specific protein, which is inactivated during purification of the Ca2+ -ATPase. A protein that catalyzes Pi transport in reconstituted vesicles has been solubilized by extraction of sarcoplasmic reticulum with sodium cholate.  相似文献   

8.
Membrane vesicles capable of energized Ca2+ pumping have been reconstituted from cardiac sarcoplasmic reticulum (SR). Cardiac SR was solubilized with Triton X-100 in a detergent to protein weight ratio of 0.8, and membranous vesicles were reconstituted by removal of detergent with Bio-Beads SM-2 (a neutral porous styrene-divinylbenzene copolymer). The reconstituted vesicles exhibited ATP-dependent oxalate-facilitated Ca2+ accumulation with rates and efficiency comparable to the best reconstituted skeletal muscle preparation (Ca2+-loading rate = 1.65 +/- 0.31 mumol mg-1 min-1, Ca2+-activated ATPase activity = 2.39 +/- 0.25 mumol mg-1 min-1, efficiency (Ca2+/ATP) = 0.69 +/- 0.09). Phospholamban in the reconstituted vesicles was phosphorylated with added catalytic subunit of cAMP-dependent protein kinase to almost the same extent as that in original vesicles. However, phosphorylation of phospholamban had no effect on the Ca2+ accumulation of the reconstituted vesicles. This is to be contrasted with a decrease in the half-maximal concentration of Ca2+ for Ca2+ accumulation (KCa) in the original vesicles from 1.35 +/- 0.08 microM to 0.75 +/- 0.12 microM by cAMP-dependent phosphorylation of phospholamban. On the other hand KCa for the reconstituted vesicles was about 0.5 microM and remained unchanged by phosphorylation, indicating that the Ca2+ pump in the reconstituted vesicles is already fully activated. These results suggest that in normal cardiac SR, phospholamban in the dephosphorylated state acts as a suppressor of the Ca2+ pump and that phosphorylation of phospholamban serves to reverse the suppression.  相似文献   

9.
It has been suggested that vesicles derived from the sarcoplasmic reticulum of skeletal muscle contain Ca2+ channels which can be opened by interaction with sulfhydryl reagents such as Ag+ or Hg2+. We show that, in reconstituted vesicles containing the (Ca2+-Mg2+)-ATPase purified from sarcoplasmic reticulum as the only protein, the ATPase can act as a pathway for Ca2+ efflux and that Ag+ induces a rapid release of Ca2+ from such reconstituted vesicles. We also show that Ag+ has a marked inhibitory effect on the ATPase activity of the purified ATPase. We suggest that the (Ca2+-Mg2+)-ATPase can act as a pathway for rapid Ca2+ release from sarcoplasmic reticulum.  相似文献   

10.
Ca2+-adenosine triphosphatase from sarcoplasmic reticulum has been delipidated by gel filtration through a Sephadex G-200 column equilibrated with buffer containing cholate. The delipidated Ca2+-adenosine triphosphatase had negligible adenosine triphosphatase activity, but up to 50% of the ATPase activity was restored when the delipidated enzyme was recombined with phosphilipids. It was shown with the delipidated preparation that the phosphorylation of the enzyme by either ATP or Pi was entirely dependent on phospholipids. Among the purified phospholipids, phosphatidylcholine reactivated the adenosine triphosphatase activity better than phosphatidylethanolamine. Vesicles capable of translocating Ca2+ were reconstituted from delipidated Ca2+-adenosine triphosphatase and phosphatidylethanolamine, but not with phosphatidylcholine alone. We conclude that the firmly bound phospholipids which are purified together with the adenosine triphosphatase protein are not essential for the pump since they can be substituted by phosphatidylethanolamine isolated from soybeans.  相似文献   

11.
The electrogenicity and some molecular properties of the sarcoplasmic reticulum Ca2+ pump protein were studied by measuring steady-state Ca2+ pump currents. Ca2(+)-ATPase protein was solubilized from rabbit skeletal muscle sarcoplasmic reticulum membrane preparations and purified by liquid chromatography. The purified Ca(+)-ATPase molecules were reconstituted into proteoliposomes and then incorporated by fusion into a planar bilayer lipid membrane. Short circuit currents across the planar membrane were detected when the ATPase molecules were activated by addition of ATP under optimal ionic conditions. Thus, the electrogenicity of the Ca2+ pump molecules was directly demonstrated. The amplitude of the pump current was dependent on the ATP concentration, and the relation was described by a Michaelis-Menten-type equation. The Michaelis constant was calculated to be 0.69 +/- 0.16 mM, which agrees well with the dissociation constant for a low affinity ATP-binding site deduced previously from the kinetics of ATP hydrolysis and from ATP binding.  相似文献   

12.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively.  相似文献   

13.
The uptake and release of Ca2+ by sarcoplasmic reticulum fragments and reconstituted ATPase vesicles was measured by a stopped-flow fluorescence method using chlortetracycline as Ca2+ indicator. Incorporation of the Ca2+ transport ATPase into phospholipid bilayers of widely different fatty acid composition increases their passive permeability to Ca2+ by several orders of magnitude. Therefore in addition to participating in active Ca2+ transport, the (Mg2+ + Ca2+)-activated ATPase also forms hydrophilic channels across the membrane. The relative insensitivity of the permeability effect of ATPase to changes in the fatty acid composition of the membrane is in accord with the suggestion that the Ca2+ channels arise by protein-protein interaction between four ATPase molecules. The reversible formation of these channels may have physiological significance in the rapid Ca2+ release from the sarcoplasmic reticulum during activation of muscle.  相似文献   

14.
本文研究了山莨菪碱对肌质网Ca~(2 )-ATPase活力及转运功能的影响.对膜结合及分离纯化的Ca~(2 )-ATPase,体系中加入不同量的药物都对酶的活力及转运效率无明显影响.当将药物与肌质网或纯化的Ca~(2 )-ATPase预保温后,山莨菪碱则表现出在低浓度使酶激活,高浓度抑制酶的活力.但都导致SRCa~(2 )转运效率降低.对用保温,超声及去污剂透析三种不同方法重建的脂酶体,结果表明:山莨菪碱通过作用于膜脂后,在低浓度激活Ca~(2 )-ATPase、高浓度抑制酶的活力.比较药物对不同类型纯磷脂重建的脂酶体活性的影响发现:山莨菪碱对含有酸性磷脂的脂酶体Ca~(2 )-ATPase的作用较不含酸性磷脂的要大.  相似文献   

15.
The mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.y.1.3]) was studied by electron spin-resonance spectroscopy in purified ATPase and reconstituted vesicles. The purified ATPase of sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length and the phospholipids were exchanged for dipalmitoylphosphatidylcholine. The spectrum of the short-chain maleimide spin-label, bound to purified ATPase indicates reduced mobility after substitution of endogenous phospholipids with dipalmitoylphosphatidylcholine. With the long-chain maleimide derivative no difference was detected in the spectra, measured at 20-35 degrees C temperature before and after substitution with dipalmitoylphosphatidylcholine. Below 10 degrees C temperature the substitution with dipalmitoylphosphatidylcholine decreased the mobility of the prove, indicating that the microviscosity of environment in the vicinity of nitroxide groups was influenced by changes in the fatty acid composition. With both short and long chain spin-labels bound to purified ATPase adn sarcoplasmic reticulum vesicles the amplitude of weakly immobilized component sharply decreased in media containing 20-50% glycerol. Therefore, the mobility of covalently bound nitroxide group in short or long chain maleimide derivatives is also sensitive to the viscosity of the water phase.  相似文献   

16.
Hexachlorocyclohexanes have been shown to inhibit the (Ca2+ + Mg2+)-ATPase of muscle sarcoplasmic reticulum reconstituted into bilayers of dioleoylphosphatidylcholine. However, for the ATPase reconstituted into bilayers of dimyristoleoylphosphatidylcholine, a pattern of activation at low concentration followed by inhibition at higher concentration is seen for hexachlorocyclohexanes and alkanes such as decane and hexadecane. The ATPase in sarcoplasmic reticulum vesicles is also inhibited by the hexachlorocyclohexanes. The effects of hexachlorocyclohexanes on activity are largely independent of concentrations of Ca2+ and ATP. Inhibition is more marked at lower temperatures. The hexachlorocyclohexanes quench the tryptophan fluorescence of the ATPase, and the quenching can be used to obtain partition coefficients into the membrane system. As for simple lipid bilayers, partition exhibits a negative temperature coefficient. Binding is related to effects on ATPase activity.  相似文献   

17.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

18.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

19.
Ca2+ ATPase activity and Ca2+ transport from Triton X-100-solubilized sarcoplasmic reticulum vesicles and soybean phospholipids were reconstituted by passing this mixture through a Bio-Bead SM-2 column. This rapid procedure gave a coupling efficiency of 0.83 mol of Ca2+-mol? of ATP hydrolyzed when 35 mg of soybean phospholipids mg?1 of protein was used.  相似文献   

20.
The (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into phospholipid bilayers. The permeability of lipid bilayers to Co2+ and glucose was increased slightly by incorporation of the ATPase, and the permeability of mixed bilayers of phosphatidylethanolamine and phosphatidylcholine increased with increasing content of phosphatidylethanolamine both in the presence and absence of the ATPase. The presence of the ATPase, however, resulted in a marked increase in permeability to Ca2+, the permeability decreasing with increasing phosphatidylethanolamine content. Permeability to Ca2+ was found to be dependent on pH and the external concentrations of Mg2+ and Ca2+, was stimulated by adenine nucleotides but was unaffected by inositol trisphosphate. A kinetic model is presented for Ca2+ efflux mediated by the ATPase. It is shown that the kinetic parameters that describe Ca2+ efflux from vesicles of sarcoplasmic reticulum also describe efflux from the vesicles reconstituted from the purified ATPase and phosphatidylcholine. It is shown that the effects of phosphatidylethanolamine on efflux can be simulated in terms of changes in the rates of the transitions linking conformations of the ATPase with inward- and outward-facing Ca2+-binding sites, and that effects of phosphatidylethanolamine on the ATPase activity of the ATPase can also be simulated in terms of effects on the corresponding conformational transitions. We conclude that the ATPase can act as a specific pathway for Ca2+ efflux from sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号