首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All higher plants have high-specific sites for binding fusicoccin (FCBS), a metabolite of the fungus Fusicoccum amygdaliDel. These sites are localized on the plasmalemma and produced by the association of the dimers of 14-3-3 proteins with the C-terminal autoinhibitory domain of H+-ATPase. Considering the fusicoccin binding to the plasmalemma as an index characterizing the formation of this complex, we studied the influence of osmotic stress on the interaction between 14-3-3 proteins and H+-ATPase in the suspension-cultured sugar beet cells and protoplasts obtained from them. An increase in the osmolarity of the extracellular medium up to 0.3 Osm was shown to enhance proton efflux from the cells by several times. The number of FCBS in isolated plasma membranes increased in parallel, whereas 14-3-3 proteins accumulated in this membrane to a lesser degree. The amount of H+-ATPase molecules did not change, and the ATP-hydrolase activity changed insignificantly. The data obtained indicate that osmotic stress affects H+-ATPase pumping in the plasmalemma through its influence on the coupling between H+-transport and ATP hydrolysis; 14-3-3 proteins are involved in this coupling. The interaction between the plasmalemma and the cell wall is suggested to be very important in this process.  相似文献   

2.
14-3-3 Proteins are found to bind to a growing number of eukaryotic proteins and evidence is accumulating that 14-3-3 proteins serve as modulators of enzyme activity. Several 14-3-3 protein recognition motifs have been identified and an increasing number of target proteins have been found to contain more than one binding site for a 14-3-3 protein. It is thus possible that 14-3-3 dimers function as clamps that simultaneously bind to two motifs within a single binding partner. Phosphorylation of a number of binding motifs has been shown to increase the affinity for 14-3-3 proteins but other mechanisms also regulate the association. It has recently been demonstrated that fusicoccin induces a tight association between 14-3-3 proteins and the plant plasma membrane H+-ATPase. Phorbol esters and other hydrophobic molecules may have a similar effect on the association between 14-3-3 proteins and specific binding partners.  相似文献   

3.
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in turgor, was found to activate the H+ efflux 5-fold. The same increment was observed in the number of high-affinity fusicoccin-binding sites in isolated plasma membranes; the 14-3-3 content in the membranes increased 2- to 3-fold, while the H+-ATPase activity changed only slightly. The data obtained indicate that osmotic regulation of H+-ATPase in the plant plasma membrane is achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such regulation involves 14-3-3 proteins. Received: 10 February 2000 / Accepted: 31 March 2000  相似文献   

4.
The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. In a previous study of regulation of individual 14-3-3 isoforms in the germinating barley embryo, we found that a post-translationally modified, 28 kDa form of 14-3-3A was present in specific cell fractions of the germinated embryo. In the present study, we identify the nature of the modification of 14-3-3A, and show that the 28 kDa doublet is the result of cleavage of the C-terminus. The 28 kDa forms of 14-3-3A lack ten or twelve amino acid residues at the non-conserved C-terminus of the protein, respectively. Barley 14-3-3B and 14-3-3C are not modified in a similar way. Like the 30 kDa form, in vitro produced 28 kDa 14-3-3A is still capable of binding AHA2 H+-ATPase in an overlay assay. Our results show a novel isoform-specific post-translational modification of 14-3-3 proteins that is regulated in a tissue-specific and developmental way.  相似文献   

5.
14-3-3 proteins: eukaryotic regulatory proteins with many functions   总被引:12,自引:0,他引:12  
The enigmatically named 14-3-3 proteins have been the subject of considerable attention in recent years since they have been implicated in the regulation of diverse physiological processes, in eukaryotes ranging from slime moulds to higher plants. In plants they have roles in the regulation of the plasma membrane H+-ATPase and nitrate reductase, among others. Regulation of target proteins is achieved through binding of 14-3-3 to short, often phosphorylated motifs in the target, resulting either in its activation (e.g. H+-ATPase), inactivation (e.g. nitrate reductase) or translocation (although this function of 14-3-3 proteins has yet to be demonstrated in plants). The native 14-3-3 proteins are homo- or heterodimers and, as each monomer has a binding site, a dimer can potentially bind two targets, promoting their association. Alternatively, target proteins may have more than one 14-3-3-binding site. In this mini review, we present a synthesis of recent results from plant 14-3-3 research and, with reference to known 14-3-3-binding motifs, suggest further subjects for research.  相似文献   

6.
Plants and protozoa contain a unique family of calcium-dependent protein kinases (CDPKs) which are defined by the presence of a carboxyl-terminal calmodulin-like regulatory domain. We present biochemical evidence indicating that at least one member of this kinase family can be stimulated by 14-3-3 proteins. Isoform CPK-1 from the model plant Arabidopsis thaliana was expressed as a fusion protein in E. coli and purified. The calcium-dependent activity of this recombinant CPK-1 was shown to be stimulated almost twofold by three different 14-3-3 isoforms with 50% activation around 200 nM. 14-3-3 proteins bound to the purified CPK-1, as shown by binding assays in which either the 14-3-3 or CPK-1 were immobilized on a matrix. Both the 14-3-3 binding and activation of CPK-1 were specifically disrupted by a known 14-3-3 binding peptide LSQRQRSTpSTPNVHMV (IC50=30 μM). These results raise the question of whether 14-3-3 can modulate the activity of CDPK signal transduction pathways in plants.  相似文献   

7.
Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA‐specific activator proteins and occurs on membrane‐associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome‐binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38RBD displays a 14‐3‐3‐like fold despite any similarity to 14‐3‐3‐proteins at the primary sequence level and thus represents the first 14‐3‐3‐like protein in mitochondria. The 14‐3‐3‐like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.  相似文献   

8.
Regulatory changes in the activity of the plasma membrane H+-ATPase in salt-stressed roots were investigated using seven-day-old seedlings of two cultivars of barley (Hordeum disticum L.) with different salt tolerances: Moskovskii-121 (salt-tolerant) and Elf (salt-sensitive). During the first hour of salt stress, the rate of proton extrusion from the excised roots increased in parallel with the ATP hydrolase activity and the amount of 14-3-3 proteins bound to H+-ATPase in isolated plasma membranes. Subsequently, all these parameters decreased and dropped after 3–6 h below the initial levels. The initial stimulation of proton extrusion from the detached barley roots was caused by osmotic stress, whereas the subsequent retardation of proton extrusion was probably caused by a toxic effect of excessive Na+ content in the cytoplasm. The salt-stress responses showed similar trends in both cultivars, with the exception that Moskovskii-121 responded faster than cv. Elf. The results indicate that 14-3-3 proteins regulate the H+-ATPase activity in the plasma membranes of barley root cells during salt stress; furthermore, the response time might be a useful indicator to discriminate cultivars with different salt tolerances.  相似文献   

9.
A 14-3-3 protein has been cloned and sequenced from a cDNA library constructed from mRNAs of mature pollen grains of Lilium longiflorum Thunb. Monoclonal antibodies (MUP 5 or MUP 15) highly specific against 14-3-3 proteins recognised a 30-kDa protein in the cytoplasmic fraction of many various lily tissues (leaves, bulbs, stems, anther filaments, pollen grains, stigmas) and in other plants (Arabidopsis seedlings, barley recombinant 14-3-3). In addition, 14-3-3 proteins were detected in a microsomal fraction isolated from pollen grains and tubes, and the amount of membrane-bound 14-3-3 proteins as well as the amount of the plasma membrane (PM) H+ ATPase increased during germination of pollen grains and tube growth. No change was observed in the cytoplasmic fraction. A further increase in the amount of 14-3-3 proteins in the microsomal fraction was observed when pollen grains were incubated in germination medium containing 1 μM fusicoccin (FC) whereas the number of 14-3-3s in the cytoplasmic fraction decreased. Fusicoccin also protected membrane-bound 14-3-3 proteins from dissociation after washing with the chaotropic salt KI. Furthermore, FC stimulated the PM H+ ATPase activity, the germination frequency and the growth rate of pollen tubes, thus indicating that a modulation of the PM H+ ATPase activity by interaction with 14-3-3 proteins may regulate germination and tube growth of lily pollen. Received: 20 June 2000 / Accepted: 2 October 2000  相似文献   

10.
The plasma membrane located fusicoccin binding protein (FCBP) is an essential element in the fusicoccin (FC) signal transduction pathway. We obtained primary sequence information for the 31 kD subunit of the FCBP. These sequences showed that the FCBP is homologous to members of the 14-3-3 protein family. Both the 31 and 30 kD subunits cross-react with 14-3-3 antibodies. In native form the FCBP occurs as a dimer, but it is also part of a complex with higher molecular mass. The monomeric forms of the FCBP (the 30 and 31 kD subunits) do not have 3H-FC binding activity. We discuss how the FCBP, as a member of the 14-3-3 protein family, may be able to bind FC and how the FC-signal is transduced to the effector protein, the H+-ATPase.  相似文献   

11.
The plant plasma-membrane H+-ATPase (EC 3.6.1.35) contains a C-terminal autoinhibitory domain whose displacement from the catalytic site is caused by treatment of intact plant tissue with the phytotoxin fusicoccin (FC). The FC-induced activation of the H+-ATPase was proposed to involve a direct interaction of 14-3-3 proteins with the H+-ATPase. By analysing plasma membranes derived from leaves of Commelina communis L., direct biochemical evidence has now been obtained for a complex between the C-terminus of the H+-ATPase and a 14-3-3 dimer. Stabilization of this complex was achieved by FC treatment in vivo or in vitro. Furthermore, the C-terminal domain of the H+-ATPase in association with a 14-3-3 dimer is essential for the creation of a functional FC-binding complex. Received: 1 August 1998 / Accepted: 15 September 1998  相似文献   

12.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   

13.
The calcium-calmodulin–dependent protein kinase kinase-2 (CaMKK2) is a key regulator of cellular and whole-body energy metabolism. It is known to be activated by increases in intracellular Ca2+, but the mechanisms by which it is inactivated are less clear. CaMKK2 inhibition protects against prostate cancer, hepatocellular carcinoma, and metabolic derangements induced by a high-fat diet; therefore, elucidating the intracellular mechanisms that inactivate CaMKK2 has important therapeutic implications. Here we show that stimulation of cAMP-dependent protein kinase A (PKA) signaling in cells inactivates CaMKK2 by phosphorylation of three conserved serine residues. PKA-dependent phosphorylation of Ser495 directly impairs calcium-calmodulin activation, whereas phosphorylation of Ser100 and Ser511 mediate recruitment of 14-3-3 adaptor proteins that hold CaMKK2 in the inactivated state by preventing dephosphorylation of phospho-Ser495. We also report the crystal structure of 14-3-3ζ bound to a synthetic diphosphorylated peptide that reveals how the canonical (Ser511) and noncanonical (Ser100) 14-3-3 consensus sites on CaMKK2 cooperate to bind 14-3-3 proteins. Our findings provide detailed molecular insights into how cAMP-PKA signaling inactivates CaMKK2 and reveals a pathway to inhibit CaMKK2 with potential for treating human diseases.  相似文献   

14.
The fission yeast plc1 + gene encodes phosphoinositide-specific phospholipase C. The two- hybrid interaction assay with plexA-plc1 + as a bait revealed that Plc1p interacted with the 14-3-3 proteins Rad24p and Rad25p. Formation of a complex containing Plc1p and Rad24p in vivo was confirmed by an immunological method. As predicted from the fact that rad24 null mutant cells are hypersensitive to UV irradiation, plc1 null mutant cells were almost as sensitive to UV irradiation as rad24 null mutant cells. In addition, deletion of rad24 in the plc1 null mutant cells did not enhance the UV sensitivity, indicating that plc1 + and rad24 + belong to the same epistasis group with respect to UV sensitivity. Whereas Rad24p has been reported to be involved in the DNA damage checkpoint pathway, the delay to mitosis after UV irradiation was not defective either in rad24 null mutant cells or in plc1 null mutant cells in our analysis. Thus, Plc1p is responsible for resistance to UV irradiation, but not for the DNA damage checkpoint pathway, in cooperation with 14-3-3 proteins. Received: 10 July 1997 / Accepted: 15 December 1997  相似文献   

15.
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.  相似文献   

16.
17.
Higher plants adapt to phosphorus deficiency through a complex of biological processes. Among of them, two adaptive processes are very important for the response of higher plants to phosphorus deficiency. One is the enhancement of root growth by regulating carbohydrate metabolism and allocation, and the other is rhizosphere acidification to acquire phosphorus efficiently from soil. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play the distinct roles in the adaption of plants to phosphorus deficiency by taking part in the two processes respectively. TFT6 which acts mainly in leaves is involved in the systemic response to phosphorus deficiency by regulating leaf carbon allocation and increasing phloem sucrose transport to promote root growth, while TFT7 directly functions in root by activating root plasma membrane H+-ATPase to release more protons under phosphorus deficiency. Based on these results, we propose that 14-3-3 proteins play the smart role in response to phosphorus deficiency in higher plants.  相似文献   

18.
The 14-3-3 family are homo- and heterodimeric proteins whose biological role has been unclear for some time, although they are now gaining acceptance as a novel type of adaptor protein that modulates interactions between components of signal transduction pathways, rather than by direct activation or inhibition. It is becoming apparent that phosphorylation of the binding partner and possibly also the 14-3-3 proteins may regulate these interactions. 14-3-3 isoforms interact with a novel phosphoserine (Sp) motif on many proteins, RSX1,2SpXP. The two isoforms that interact with Raf-1 are phosphorylated in vivo on Ser185 in a consensus sequence motif for proline-directed kinases. The crystal structure of 14-3-3 indicates that this phosphorylation could regulate interaction of 14-3-3 with its target proteins. We have now identified a number of additional phosphorylation sites on distinct mammalian and yeast isoforms.  相似文献   

19.
20.
The 14-3-3 Proteins: Gene,Gene Expression,and Function   总被引:6,自引:0,他引:6  
14-3-3 Proteins were discovered by Moore and Perez in the soluble extract of bovine brain. These proteins are highly abundant in the brain. In this review 14-3-3 cDNA cloning, nucleotide sequence of 14-3-3 cDNA, the structure of 14-3-3 gene and 14-3-3 gene expression, in situ hybridization of 14-3-3 mRNA in the brain, the function and regulation of 14-3-3 protein, the binding of 14-3-3 protein to other proteins, the effects of 14-3-3 protein on the binding of a protein to other proteins, and the effect on protein kinase, etc., are concisely described. From the recent rapid development of proteom technology, markedly more target proteins of 14-3-3 protein should be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号