首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Rui Jia 《Autophagy》2020,16(2):382-384
ABSTRACT

Like other biological processes, macroautophagy/autophagy must be tightly controlled for maintenance of cellular homeostasis and for proper response to changing cellular conditions. To gain insights into the regulation of autophagy, we recently conducted a genome-wide CRISPR-Cas9 knockout screen using cells expressing endogenous LC3B tagged with GFP-mCherry as a reporter. This approach allowed us to identify the ubiquitin-activating enzyme UBA6 and the hybrid ubiquitin-conjugating enzyme/ubiquitin ligase BIRC6 as novel autophagy regulators. We found that these enzymes cooperate to mediate monoubiquitination and proteasomal degradation of LC3B, thus limiting the pool of LC3B available for autophagy. Depletion of UBA6 or BIRC6 increased the level of cytosolic LC3B, enhancing the degradation of autophagy adaptors and the clearance of intracellular proteins aggregates. This finding could be the basis for the development of pharmacological inhibitors of UBA6 or BIRC6 for the treatment of protein aggregation disorders. Recent work by another group showed that BIRC6 itself is subject to ubiquitination and proteasomal degradation, highlighting the existence of a complex regulatory network for the control of LC3B levels.  相似文献   

3.
De Strooper B 《Neuron》2003,38(1):9-12
Gamma-Secretase cleaves the Amyloid Precursor Protein (APP) in its transmembrane domain, releasing the amyloid peptide Abeta. Abeta is the main constituent of the amyloid plaques in the brains of patients suffering from Alzheimer's disease. Several other type I integral membrane proteins are also cleaved by this protease. Recent work indicates that gamma-Secretase is a multiprotein complex consisting of Presenilin, Nicastrin, Aph-1, and Pen-2 and that all four proteins are necessary for full proteolytic activity. Since several paralogs and alternatively spliced variants of at least Presenilin and Aph-1 have been identified as well, it is anticipated that gamma-Secretase is not a homogeneous activity. Gamma-Secretase is an interesting but complex drug target that challenges classical thinking about proteolytic processing and intracellular signaling.  相似文献   

4.
5.
ATP-binding cassette transporter (ABC) A1 was increased by apolipoprotein A-I without an increase of its message in THP-1 cells. The pulse label study demonstrated that apoA-I retarded degradation of ABCA1. Similar changes were demonstrated by apoA-II, but the effect of high density lipoprotein was almost negligible on the basis of equivalent protein concentration. Thiol protease inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal (ALLN)) increased ABCA1 and slowed its decay in the cells, whereas none of the proteosome-specific inhibitor lactacystin, other protease inhibitors, or the lysosomal inhibitor NH(4)Cl showed such effects. The effects of apoA-I and ALLN were additive for the increase of ABCA1, and the apoA-I-mediated cellular lipid release was enhanced by ALLN. The data suggest that ABCA1 is rapidly degraded by a thiol protease(s) in the cells unless helical apolipoproteins in their lipid-free form stabilize ABCA1 by protecting it from protease-mediated degradation.  相似文献   

6.
A family of anti-apoptotic regulators known as IAP (inhibitor of apoptosis) proteins interact with multiple cellular partners and inhibit apoptosis induced by a variety of stimuli. c-IAP (cellular IAP) 1 and 2 are recruited to TNFR1 (tumour necrosis factor receptor 1)-associated signalling complexes, where they mediate receptor-induced NF-kappaB (nuclear factor kappaB) activation. Additionally, through their E3 ubiquitin ligase activities, c-IAP1 and c-IAP2 promote proteasomal degradation of NIK (NF-kappaB-inducing kinase) and regulate the non-canonical NF-kappaB pathway. In the present paper, we describe a novel ubiquitin-binding domain of IAPs. The UBA (ubiquitin-associated) domain of IAPs is located between the BIR (baculovirus IAP repeat) domains and the CARD (caspase activation and recruitment domain) or the RING (really interesting new gene) domain of c-IAP1 and c-IAP2 or XIAP (X-linked IAP) respectively. The c-IAP1 UBA domain binds mono-ubiquitin and Lys(48)- and Lys(63)-linked polyubiquitin chains with low-micromolar affinities as determined by surface plasmon resonance or isothermal titration calorimetry. NMR analysis of the c-IAP1 UBA domain-ubiquitin interaction reveals that this UBA domain binds the classical hydrophobic patch surrounding Ile(44) of ubiquitin. Mutations of critical amino acid residues in the highly conserved MGF (Met-Gly-Phe) binding loop of the UBA domain completely abrogate ubiquitin binding. These mutations in the UBA domain do not overtly affect the ubiquitin ligase activity of c-IAP1 or the participation of c-IAP1 and c-IAP2 in the TNFR1 signalling complex. Treatment of cells with IAP antagonists leads to proteasomal degradation of c-IAP1 and c-IAP2. Deletion or mutation of the UBA domain decreases this degradation, probably by diminishing the interaction of the c-IAPs with the proteasome. These results suggest that ubiquitin binding may be an important mechanism for rapid turnover of auto-ubiquitinated c-IAP1 and c-IAP2.  相似文献   

7.
The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and shuts down signaling from 7-transmembrane receptors (7TMs). Although, receptor activity controls GRK2 expression levels, the underlying molecular mechanisms are poorly understood. We have previously shown that extracellular signal-regulated kinase (ERK1/2) activation increases GRK2 expression [J. Theilade, J. Lerche Hansen, S. Haunso, S.P. Sheikh, Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2), FEBS Lett. 518 (2002) 195-199]. In the present study, we found that ERK1/2 regulates GRK2 degradation rather than synthesis. ERK1/2 blockade using PD98059 decreased GRK2 cellular levels to 0.25-fold of control in Cos7 cells. This effect was due to enhanced degradation of the GRK2 protein, since proteasome blockade prevented down-regulation of GRK2 protein levels in the presence of PD98059. Further, ERK blockade had no effect on GRK2 synthesis as probed using a reporter construct carrying the GRK2 promoter upstream of the luciferase gene. We predict ERK1/2 mediated GRK2 protection could be a general phenomenon as proteasome inhibition increased GRK2 expression in two other cell lines, HEK293 and NIH3T3.  相似文献   

8.
p21-activated protein kinases (PAKs) are a family of serine/threonine protein kinases that are activated by binding of the p21 G proteins Cdc42 or Rac. The ubiquitous PAK-2 (gamma-PAK) is unique among the PAK isoforms because it is also activated through proteolytic cleavage by caspases or caspase-like proteases. In response to stress stimulants such as tumor necrosis factor alpha or growth factor withdrawal, PAK-2 is activated as a full-length enzyme and as a proteolytic PAK-2p34 fragment. Activation of full-length PAK-2 stimulates cell survival, whereas proteolytic activation of PAK-2p34 is involved in programmed cell death. Here we provide evidence that the proapoptotic effect of PAK-2p34 is regulated by subcellular targeting and degradation by the proteasome. Full-length PAK-2 is localized in the cytoplasm, whereas the proteolytic PAK-2p34 fragment translocates to the nucleus. Subcellular localization of PAK-2 is regulated by nuclear localization and nuclear export signal motifs. A nuclear export signal motif within the regulatory domain prevents nuclear localization of full-length PAK-2. Proteolytic activation removes most of the regulatory domain and disrupts the nuclear export signal. The activated PAK-2p34 fragment contains a nuclear localization signal and translocates to the nucleus. However, levels of activated PAK-2p34 are tightly regulated through ubiquitination and degradation by the proteasome. Inhibition of degradation by blocking polyubiquitination results in significantly increased levels of PAK-2p34 and as a consequence, in stimulation of programmed cell death. Therefore, nuclear targeting and inhibition of degradation appear to be critical for stimulation of the cell death response by PAK-2p34.  相似文献   

9.
《Molecular cell》2023,83(11):1921-1935.e7
  1. Download : Download high-res image (177KB)
  2. Download : Download full-size image
  相似文献   

10.
NOD2, the nucleotide-binding domain and leucine-rich repeat containing gene family (NLR) member 2 is involved in mediating antimicrobial responses. Dysfunctional NOD2 activity can lead to severe inflammatory disorders, but the regulation of NOD2 is still poorly understood. Recently, proteins of the tripartite motif (TRIM) protein family have emerged as regulators of innate immune responses by acting as E3 ubiquitin ligases. We identified TRIM27 as a new specific binding partner for NOD2. We show that NOD2 physically interacts with TRIM27 via the nucleotide-binding domain, and that NOD2 activation enhances this interaction. Dependent on functional TRIM27, ectopically expressed NOD2 is ubiquitinated with K48-linked ubiquitin chains followed by proteasomal degradation. Accordingly, TRIM27 affects NOD2-mediated pro-inflammatory responses. NOD2 mutations are linked to susceptibility to Crohn's disease. We found that TRIM27 expression is increased in Crohn's disease patients, underscoring a physiological role of TRIM27 in regulating NOD2 signaling. In HeLa cells, TRIM27 is partially localized in the nucleus. We revealed that ectopically expressed NOD2 can shuttle to the nucleus in a Walker A dependent manner, suggesting that NOD2 and TRIM27 might functionally cooperate in the nucleus.We conclude that TRIM27 negatively regulates NOD2-mediated signaling by degradation of NOD2 and suggest that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases.  相似文献   

11.
Mammalian serine racemase is a brain-enriched enzyme that converts L- into D-serine in the nervous system. D-Serine is an endogenous co-agonist at the "glycine site" of N-methyl D-aspartate (NMDA) receptors that is required for the receptor/channel opening. Factors regulating the synthesis of D-serine have implications for the NMDA receptor transmission, but little is known on the signals and events affecting serine racemase levels. We found that serine racemase interacts with the Golgin subfamily A member 3 (Golga3) protein in yeast two-hybrid screening. The interaction was confirmed in vitro with the recombinant proteins in co-transfected HEK293 cells and in vivo by co-immunoprecipitation studies from brain homogenates. Golga3 and serine racemase co-localized at the cytosol, perinuclear Golgi region, and neuronal and glial cell processes in primary cultures. Golga3 significantly increased serine racemase steady-state levels in co-transfected HEK293 cells and primary astrocyte cultures. This observation led us to investigate mechanisms regulating serine racemase levels. We found that serine racemase is degraded through the ubiquitin-proteasomal system in a Golga3-modulated manner. Golga3 decreased the ubiquitylation of serine racemase both in vitro and in vivo and significantly increased the protein half-life in pulse-chase experiments. Our results suggest that the ubiquitin system is a main regulator of serine racemase and D-serine levels. Modulation of serine racemase degradation, such as that promoted by Golga3, provides a new mechanism for regulating brain d-serine levels and NMDA receptor activity.  相似文献   

12.
13.
14.
15.
The accumulation of oxidatively damaged proteins is a well-known hallmark of aging and several neurodegenerative diseases including Alzheimer's, Parkinson's and Huntigton's diseases. These highly oxidized protein aggregates are in general not degradable by the main intracellular proteolytic machinery, the proteasomal system. One possible strategy to reduce the accumulation of such oxidized protein aggregates is the prevention of the formation of oxidized protein derivatives or to reduce the protein oxidation to a degree that can be handled by the proteasome. To do so an antioxidative strategy might be successful. Therefore, we undertook the present study to test whether antioxidants are able to prevent the protein oxidation and to influence the proteasomal degradation of moderate oxidized proteins. As a model protein we choose ferritin. H2O2 induced a concentration dependent increase of protein oxidation accompanied by an increased proteolytic susceptibility. This increase of proteolytic susceptibility is limited to moderate hydrogen peroxide concentrations, whereas higher concentrations are accompanied by protein aggregate formation.

Protective effects of the vitamin E derivative Trolox, the pyridoindole derivative Stobadine and of the standardized extracts of flavonoids from bark of Pinus Pinaster Pycnogenol® and from leaves of Ginkgo biloba (EGb 761) were studied on moderate damaged ferritin.  相似文献   

16.
Hedgehog (Hh) signaling pathway includes canonical and non-canonical activation manners. In colorectal cancer, we have previously shown that PGE2-JNK could initiate non-canonical activation of the Hh signaling pathway. In this study, we showed that c-Jun, a classic substrate of JNK, increased Gli2 protein stability after phosphorylated by PGE2. Suppressing the function of c-Jun or JNK indicated that c-Jun prevents Gli2 from protease degradation caused by PGE2-JNK. Moreoer, we revealed that less ubiquitination of Gli2 was detected in colorectal cancer cells treated with PGE2 while suppression of c-Jun restored the ubiquitination of Gli2. In addition, we observed that suppression of c-Jun significantly decreased Gli2 expression no matter when Gli2 remained in phosphorylation or non-phosphorylation state. These phenomena were recapitulated, when the endpoint of Gli2 expression was replaced by Gli2 ubiquitination. Furthermore, we demonstrated that restricting c-Jun function ablated the PGE2-provoked Hh activity and proliferation of colorectal cancer cells. These results elucidated that the evasion of Gli2 with phosphorylation from proteasomal-ubiquitin degradation needed the cooperation of phosphorylated c-Jun by kinase JNK, which contributed to promoting Hh activation and the proliferation of colorectal cancer cells. This study provides a theoretical foundation to target PGE2 downstream for the prevention and treatment of colorectal cancer.  相似文献   

17.
The accumulation of oxidatively damaged proteins is a well-known hallmark of aging and several neurodegenerative diseases including Alzheimer's, Parkinson's and Huntigton's diseases. These highly oxidized protein aggregates are in general not degradable by the main intracellular proteolytic machinery, the proteasomal system. One possible strategy to reduce the accumulation of such oxidized protein aggregates is the prevention of the formation of oxidized protein derivatives or to reduce the protein oxidation to a degree that can be handled by the proteasome. To do so an antioxidative strategy might be successful. Therefore, we undertook the present study to test whether antioxidants are able to prevent the protein oxidation and to influence the proteasomal degradation of moderate oxidized proteins. As a model protein we choose ferritin. H2O2 induced a concentration dependent increase of protein oxidation accompanied by an increased proteolytic susceptibility. This increase of proteolytic susceptibility is limited to moderate hydrogen peroxide concentrations, whereas higher concentrations are accompanied by protein aggregate formation.

Protective effects of the vitamin E derivative Trolox, the pyridoindole derivative Stobadine and of the standardized extracts of flavonoids from bark of Pinus Pinaster Pycnogenol® and from leaves of Ginkgo biloba (EGb 761) were studied on moderate damaged ferritin.  相似文献   

18.
Tauopathies are a group of neurodegenerative diseases characterized by hyperphosphorylation of the microtubule-binding protein, tau, and typically feature axon impairment and synaptic dysfunction. Cyclin-dependent kinase5 (Cdk5) is a major tau kinase and its activity requires p35 or p25 regulatory subunits. P35 is subjected to rapid proteasomal degradation in its membrane-bound form and is cleaved by calpain under stress to a stable p25 form, leading to aberrant Cdk5 activation and tau hyperphosphorylation. The type Ib transmembrane protein RPS23RG1 has been implicated in Alzheimer’s disease (AD). However, physiological and pathological roles for RPS23RG1 in AD and other tauopathies are largely unclear. Herein, we observed retarded axon outgrowth, elevated p35 and p25 protein levels, and increased tau phosphorylation at major Cdk5 phosphorylation sites in Rps23rg1 knockout (KO) mice. Both downregulation of p35 and the Cdk5 inhibitor roscovitine attenuated tau hyperphosphorylation and axon outgrowth impairment in Rps23rg1 KO neurons. Interestingly, interactions between the RPS23RG1 carboxyl-terminus and p35 amino-terminus promoted p35 membrane distribution and proteasomal degradation. Moreover, P301L tau transgenic (Tg) mice showed increased tau hyperphosphorylation with reduced RPS23RG1 levels and impaired axon outgrowth. Overexpression of RPS23RG1 markedly attenuated tau hyperphosphorylation and axon outgrowth defects in P301L tau Tg neurons. Our results demonstrate the involvement of RPS23RG1 in tauopathy disorders, and implicate a role for RPS23RG1 in inhibiting tau hyperphosphorylation through homeostatic p35 degradation and suppression of Cdk5 activation. Reduced RPS23RG1 levels in tauopathy trigger aberrant Cdk5-p35 activation, consequent tau hyperphosphorylation, and axon outgrowth impairment, suggesting that RPS23RG1 may be a potential therapeutic target in tauopathy disorders.Subject terms: Neural ageing, Neurological disorders  相似文献   

19.
The enzyme cyclooxygenase-2 (COX-2) is rapidly and transiently up-regulated by a large variety of signals and implicated in pathologies such as inflammation and tumorigenesis. Although many signals cause COX-2 up-regulation, much less is known about mechanisms that actively down-regulate its expression. Here we show that the G protein-coupled receptor prostaglandin E(1) (EP(1)) reduces the expression of COX-2 in a concentration-dependent manner through a mechanism that does not require receptor activation. The reduction in COX-2 protein is not due to decreased protein synthesis and occurs because of enhancement of substrate-independent COX-2 proteolysis. Although EP(1) does not interfere with the entry of COX-2 into the endoplasmic reticulum-associated degradation cascade, it facilitates COX-2 ubiquitination through complex formation. Blockade of proteasomal activity results in degradation of the receptor and concomitant recovery in the expression of COX-2, suggesting that EP(1) may scaffold an unknown E3 ligase that ubiquitinates COX-2. These findings propose a new role for the EP(1) receptor in resolving inflammation through down-regulation of COX-2.  相似文献   

20.
Branched‐chain amino acid (BCAA) metabolism is a central hub for energy production and regulation of numerous physiological processes. Controversially, both increased and decreased levels of BCAAs are associated with longevity. Using genetics and multi‐omics analyses in Caenorhabditis elegans, we identified adaptive regulation of the ubiquitin‐proteasome system (UPS) in response to defective BCAA catabolic reactions after the initial transamination step. Worms with impaired BCAA metabolism show a slower turnover of a GFP‐based proteasome substrate, which is suppressed by loss‐of‐function of the first BCAA catabolic enzyme, the branched‐chain aminotransferase BCAT‐1. The exogenous supply of BCAA‐derived carboxylic acids, which are known to accumulate in the body fluid of patients with BCAA metabolic disorders, is sufficient to regulate the UPS. The link between BCAA intermediates and UPS function presented here sheds light on the unexplained role of BCAAs in the aging process and opens future possibilities for therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号