首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated that in vitro brief ischemia activates nuclear factor (NF)-kappaB in rat myocardium. We report in vivo ischemia-reperfusion (I/R)-induced NF-kappaB activation, IkappaB kinase -beta (IKKbeta) activity, and IkappaBalpha phosphorylation and degradation in rat myocardium. Rat hearts were subjected to occlusion of the coronary artery for up to 45 min or occlusion for 15 min followed by reperfusion for up to 3 h. Cytoplasmic and nuclear proteins were isolated from ischemic and nonischemic areas of each heart. NF-kappaB activation was increased in the ischemic area (680%) after 10 min of ischemia and in the nonischemic area (350%) after 15 min of ischemia and remained elevated during prolonged ischemia and reperfusion. IKKbeta activity was markedly increased in ischemic (1,800%) and nonischemic (860%) areas, and phosphorylated IkappaBalpha levels were significantly elevated in ischemic (180%) and nonischemic (280%) areas at 5 min of ischemia and further increased after reperfusion. IkappaBalpha levels were decreased in the ischemic (45%) and nonischemic (36%) areas after 10 min of ischemia and remained low in the ischemic area during prolonged ischemia and reperfusion. The results suggest that in vivo I/R rapidly induces IKKbeta activity and increases IkappaBalpha phosphorylation and degradation, resulting in NF-kappaB activation in the myocardium.  相似文献   

2.
Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome-c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that beta-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus beta-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the beta(1)-adrenergic receptor (beta(1)-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the beta(1)-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the beta(1)-AR during preconditioning eliminated the cardioprotection. If the beta(1)-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the beta(1)-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.  相似文献   

3.
The study was conducted to determine if myocardium can be protected against ischemic and reperfusion damage by means of the preliminarily injected perfluorocarbon emulsion. Injection of the emulsion into rabbit 1, 12, 24 h prior to ischemia was found to decrease the extent of ischemic and reperfusion damage to myocardium. The cardiotropic effect of the injected emulsion is shown to be dose- and time dependent.  相似文献   

4.
It has been shown that after ischemia-reperfusion, application of hyperbaric oxygen (HBO) reduces cardiac injury. In this study we tested the hypothesis that HBO preconditioning reduces injury to the ischemic myocardium. One hundred and eight adult male Sprague-Dawley rats (250-280 g) were randomly divided into four groups: normoxia + sham surgery (CS), normoxia + permanent occlusion of the left anterior descending (LAD) coronary artery (CMI), HBO preconditioning + sham surgery (HS), and HBO preconditioning + permanent LAD occlusion (HMI). Rats receiving HBO preconditioning were intermittently exposed to 100% O(2) at 2.5 atmosphere absolute (ATA) for 60 min, twice daily for 2 days followed by 12 hrs of recovery in room air prior to the myocardial ischemic insult induced by LAD ligation. Rats in the normoxia group were time-matched with the HBO group and maintained under normoxic conditions prior to LAD occlusion. At 3 and 7 days after LAD occlusion, heart function parameters were measured by inserting a catheter into the left ventricle, infarct size was calculated using the method of TTC staining, myocardial capillary density was determined by immunohistochemical staining with a monoclonal anti-CD(31)/PECAM-1 antibody, and VEGF protein level was determined by Western blot analysis. At 3 days after LAD ligation, the infarct size of the HMI group was significantly smaller than that of the CMI group (26 +/- 2.5% vs. 38 +/- 3%, P < 0.05). The heart function parameters including left ventricular systolic pressure (LVSP), +dP/dt(max) and -dP/dt(max) were significantly improved in the HMI group compared to the CMI group at 3 and 7 days after LAD occlusion. Capillary density and VEGF protein levels were significantly increased in the ischemic myocardium pre-exposed to HBO. We conclude that HBO preconditioning alleviates myocardial ischemia in rat model.  相似文献   

5.
Tissue PO2 was measured in the primary visual cortex of anesthetized, artificially ventilated, normovolemic cats to evaluate the effect of small doses [1 g perfluorocarbon (PFC)/kg] of a PFC emulsion (1 g PFC/1.1 ml emulsion; Alliance Pharmaceutical, San Diego, CA) on brain oxygenation. The change in tissue PO2 (DeltaPO2), resulting from briefly changing the respiratory gas from room air to 100% oxygen, was measured before and after intravenous infusion of the emulsion. Before emulsion, DeltaPO2 was 51.1 +/- 45.6 Torr (n = 8 cats). Increases in DeltaPO2 of 34.0 +/- 26.1 (SD) % (n = 8) and 16. 3 +/- 8.4% (n = 6) were observed after the first and second emulsion infusions, respectively. The further increase in DeltaPO2 after the third dose (7.9 +/- 10.5%; n = 7) was not statistically significant. The observed increases in tissue oxygenation as a result of the PFC infusions appear to be the result of enhanced oxygen transport to the tissue.  相似文献   

6.
The effect of pretreatment by phenothiazines--Chlorpromazine (CPR) /Spofa/ and Trifluoperazine (TFP) /Smith Kline and French/ on reperfusion injury of ischemic myocardium were studied. Reperfusion of ischemic myocardium following an ischemic period exceeding 40 min resulted in morphological, physiological and biochemical changes identical with those induced by enhanced cytosolic Ca2+ concentration. Left descending coronary ligation was performed on 70 dogs divided into four group. Group I: permanent occlusion (5 dogs--60 min, 5 dogs--120 min, 5 dogs--180 min); group II: 15 dogs (60 min occlusion + 120 min reperfusion); group III: 20 dogs (60 min occlusion, 15 mg CPR, reperfusion 120 min); group IV: 20 dogs (60 min occlusion, 2 mg TFP + 120 min reperfusion). CPR or TFP were administered 30 min after the ligation. The effect of drugs was quantified on tetrazolium stained gross sections and studied from physiological, biochemical and ultrastructural points of view. Treatment of animals with phenothiazines, known as calmodulin inhibitors, considerably improved the ultrastructure of myocytes in area at risk, and allowed for the recovery of at least 60 per cent of injured myocytes after reflow restoration. Ultrastructural findings tightly correlate with physiological and biochemical results.  相似文献   

7.
The effects of ethacizin on delayed activation of the ischemic myocardium by acute left anterior descending coronary artery occlusion were studied in dogs. Ethacizin, administered intravenously at a dose of 0.5 or 1 mg/kg depressed the conduction of excitation in the ischemic myocardium and significantly increased the incidence of ventricular fibrillation. Electrophysiological effects of ethacizin in acute myocardial ischemia, as well as its antiarrhythmic activity at the advanced stages of experimental myocardial infarction might be related to an intensive influence of ethacizin on fast inward sodium current in the myocardial fibers.  相似文献   

8.
G Greve  T Saetersdal 《Acta anatomica》1991,142(4):366-373
The feasibility of measuring the extent of hypoperfused myocardium and the infarct size was examined in rat hearts after occlusion of the left coronary artery. The extent of hypoperfused myocardium was examined by autoradiography and after perfusion with fluorescent microspheres. Both methods appeared unreliable in this model. Triphenyltetrazolium chloride (TTC) staining, however, provided a distinct demarcation line between viable myocardium, which was stained red, and the necrotic myocardium, consistent with the ultrastructural border between normal and severely damaged myocytes 5 h after coronary occlusion. TTC staining gives the best demarcation of ischemic tissues. In verapamil-treated rats, there was an apparent reduction in infarct size as compared with untreated rats; 20% reduction in infarct size 5 h after coronary occlusion and 12% reduction after 24 h. There was, however, a large postoperative mortality among the verapamil-treated rats. These problems, and the nonuniform infarct size in rats, may in part explain why infarct size limitation by verapamil has been reported from rat experiments, but not from clinical trials.  相似文献   

9.
The effect of different doses of perfluorocarbon emulsion (5, 10, and 15 ml/kg) on the hemodynamics and contractility of heart was studied on anesthetized dogs. The emulsion was introduced intravenously by the 60th minute of acute myocardium ischemia caused by partial coronary occlusion. When pO2 = 120 mm Hg, the emulsion was efficient only at doses of 10 and 15 ml/kg (an increase in cardiac ejection, in the rate of contraction and relaxation of the myocardium, reduction of vascular resistance). However, the efficiency of the emulsion at a dose of 15 ml/kg was lower, possibly, due to hypervolemia and cardiodepressive effect of introduction of excess quantity of the surface-active substance proxanol, a component of the emulsion.  相似文献   

10.
The most premature motion change after coronary occlusion is early diastolic thinning of the ischemic left ventricular (LV) wall, with concomitant thickening of the normoperfused wall. We aimed 1). to demonstrate that these early changes are the result of the absence of fluid within the ischemic myocardium (hydraulic skeleton) rather than to cell anoxia and 2). to quantitate the contribution of the lack of hydraulic skeleton to left ventricular asynergy of contraction in seven anesthetized dogs submitted to acute, short-lasting circumflex artery (Cx) occlusion (ischemia) and to perfusion of the Cx with an oxygen-free solution (anoxia). We analyzed the time course of regional work index (WI, area of the LV pressure-wall thickness loop) and regional efficiency (defined as the ratio of WI to the maximum possible work). Interwall asynergy was defined as the difference between the regional efficiency of the anterior and posterior walls. After 9-10 s, posterior wall efficiency decreased 37 +/- 6% with anoxia and 72 +/- 3% with ischemia (P < 0.025), and interwall asynergy was 0 +/- 6% with anoxia and 32 +/- 5% with ischemia (P < 0.05). The contribution of absent hydraulic skeleton to interwall asynergy (calculated as the difference between %asynergy in anoxia and %asynergy in ischemia) was 30 +/- 8% (P < 0.05). In conclusion, the earliest wall motion change observed after acute coronary occlusion, namely ischemic wall thinning concomitant with normoperfused wall thickening during isovolumic relaxation, is the result of the absence of intracoronary fluid. The lack of hydraulic skeleton within the myocardium contributes approximately 30% to interwall asynergy.  相似文献   

11.
赵志青  刘冰 《生理学报》1989,41(4):346-353
本实验在18只麻醉开胸犬观察了急性心肌缺血早期血小板聚集功能和冠脉侧支循环功能的变化。实验结果如下:阻断冠脉后心肌缺血区血液中血小板聚集率(PAgR)增大,血小板计数(PC)减少。缺血50min时,PAgR增大58.7±5.6%,PC减少39.5±23.6%,与对照值有明显差异(均为P<0.01)。与此同时,在控制血压条件下,心肌缺血早期单位压力差下冠脉侧支血流量的变化与对照值无明显差异,而根据Wyatt等公式计算的流经缺血区末梢血管的有效侧支血流量明显降低,缺血50min时较对照值降低23.5±9.7%(P<0.05)。PAgR变化与有效侧支血流量改变呈明显负相关(r=-0.887,P<0.01);冠脉侧支指数与梗塞范围呈明显负相关(r=-0.847,P<0.01)。阻断冠脉前静脉注射血小板聚集功能抑制剂阿斯匹林,可明显减轻上述各项参数的异常变化。这些结果提示,心肌缺血早期血小板聚集功能的异常变化虽然对冠脉侧支血管的血流阻力影响较小,但却使流经缺血区末梢血管的有效侧支血流量明显减小,进而扩大梗塞范围。  相似文献   

12.
Perfluorocarbon (PFC) emulsions used as artificial oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid‐based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically‐used PEs. The rheological behavior of the mixtures was analyzed in vitro in parallel with in vivo analysis of blood flow in the microcirculation using intravital microscopy, when PEs were administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation and increased blood viscosity in a shear dependent fashion. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo compared to nonaggregating mixtures of PFC and PEs. For the PEs evaluated, human serum albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rates (e.g., arterioles, venules, and pulmonary circulation) when used in a clinical setting, because persistent aggregates could cause capillary occlusion, decreased perfusion, pulmonary emboli or focal ischemia. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:796–807, 2013  相似文献   

13.
用长度计和多导仪记录狗左心室胸面近心外膜层心肌的长度,长度变化速率(dL/dt),压力-长度环和心肌作功量等项指标,从心肌运动功能的角度探讨急性心肌缺血早期心室内压最大下降速率(-dP/dt-max)降低的机理。实验结果表明:(1)阻断冠状动脉左前降支(LAD)后5s 左右,-dP/dt-max 降到最低值时,LVEDP 和心肌舒张末期长度相应增加,此时非缺血区心肌(n=8)收缩增强,作功量增加,长度曲线、dL/dt 曲线和压力-长度环的时相关系正常;而缺血区心肌(n=16)收缩功能减弱,并出现射血晚期和舒张早期的反向异常运动(由缩短转为延长),故长度曲线反向膨出,压力-长度环由正常的逆钟向环变为“8”字形顺钟向环,心肌作功降低并转为负功;(2)阻断 LAD 后,在-dP/dt-max 降低并达到最低值时,-dP/dt-max 瞬间的心肌缩短速率(dL/dt)也逐渐降低并转为负值(-dL/dt),此时长度曲线和压力-长度环尚无可见的变化。随后,-dL/dt 增大,并且在时间上不再对应而是逐渐趋前于-dP/dt-max 瞬间。说明缺血心肌的反常运动首先发生在等容舒张相对应-dP/dt-max的瞬间,随后才扩展到射血晚期,这一现象可以为缺血早期心室舒张功能损伤、-dP/dt-max下降作出合理解释。  相似文献   

14.

Background

19F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared 19F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation.

Methods/Principal Findings

Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong 19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like 19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the 19F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage.

Conclusion

Our study shows that vessel occlusion can be followed in vivo by 19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.  相似文献   

15.
A brief, transient period of coronary artery occlusion (less than 20 minutes in duration) followed by reperfusion does not result in irreversible myocyte injury or death, yet the regional contractile function and high energy phosphate content of the previously ischemic tissue remains depressed or 'stunned' for hours to days following reperfusion. It has been suggested that this prolonged postischemic dysfunction of viable, previously ischemic myocardium may be a consequence of oxygen-derived free radicals generated during occlusion or at the time of reperfusion. Recent evidence demonstrates that free radical scavenging agents such as superoxide dismutase (SOD) + catalase, N-2-mercaptopropionylglycine, and allopurinol, administered prior to coronary artery occlusion, significantly enhance recovery of regional contractile function of the stunned, previously ischemic tissue. This improved contractile function was not, however, accompanied by improvements in high energy phosphate metabolism: infusion of SOD + catalase did not preserve ATP stores in the previously ischemic tissue. These data support the hypothesis that oxygen-derived free radicals contribute, at least in part, to the phenomenon of the stunned myocardium. The source or mechanisms of free radical production in the setting of brief, transient ischemia, however, remains to be elucidated.  相似文献   

16.
Intravenous perfluorocarbon (PFC) emulsions, administered with supplemental inspired O(2), are being evaluated for their ability to eliminate N(2) from blood and tissue prior to submarine escape, but these agents can increase the incidence of central nervous system (CNS) O(2) toxicity, perhaps by enhancing O(2) delivery to the brain. To assess this, we infused a PFC emulsion (Oxycyte, 6 ml/kg iv) into anesthetized rats and measured cerebral Po(2) and regional cerebral blood flow (rCBF) in cortex, hippocampus, hypothalamus, and striatum with 100% O(2) at 1, 3, or 5 atmospheres absolute (ATA). At 1 ATA, brain Po(2) stabilized at >20 mmHg higher in animals infused with PFC emulsion than in control animals infused with saline, and rCBF fell by ~10%. At 3 ATA, PFC emulsion raised brain Po(2) >70 mmHg above control levels, and rCBF decreased by as much as 25%. At 5 ATA, brain Po(2) was ≥159 mmHg above levels in control animals for the first 40 min but then rose sharply; rCBF showed a similar profile, reflecting vasoconstriction followed by hyperemia. Conscious rats were also pretreated with PFC emulsion at 3 or 6 ml/kg iv and exposed to 100% O(2) at 5 ATA. At the lower dose, 80% of the animals experienced seizures by 33 min compared with 50% of the control animals. At the higher dose, seizures occurred in all rats within 25 min. At these doses, administration of PFC emulsion poses a clear risk of CNS O(2) toxicity in conscious rats exposed to hyperbaric O(2) at 5 ATA.  相似文献   

17.
The area at risk of infarction after an acute occlusion of the left anterior descending coronary artery was defined in anesthetized dogs using the distribution of 99mTc-labelled albumin microaggregates and Monastral blue dye. In thirteen dogs, it was determined that these two particulate labels identified identical areas of unperfused myocardium. In a second group of dogs (n = 12), the risk areas determined at 10 (99mTc-labelled macroaggregates) and at 180 min (Monastral blue dye) were found to be identical, with no change in collateral blood flow, indicating the absence of a spontaneous change in underperfused myocardium over this time. In a third group of dogs (n = 17) nicardipine was infused (10 micrograms.kg-1.min-1 for 5 min, followed by 8 micrograms.kg-1.min-1 for 165 min). This resulted in a significant and sustained fall (32 +/- 4 mmHg; 1 mmHg = 133.32 Pa) in mean arterial blood pressure but no significant change in collateral blood flow was found, except for a marginal increase in the center of the ischemic zone. Area at risk and infarct sizes were also not significantly different between the latter two groups (18.2 +/- 4.1 vs. 21.6 +/- 4.0% of left ventricle). In this model, the magnitude of the area at risk appears to be determined early after a coronary occlusion and appears to be unmodified by treatment with nicardipine begun after the occlusion.  相似文献   

18.
Nitric oxide (NO) is the mediator of ischemic preconditioning against myocardial infarction. Desflurane produces anesthetic preconditioning to protect the myocardium against infarction. In the model of myocardial ischemia-reperfusion injury in rabbits, we evaluated desflurane-induced ischemic preconditioning and studied its mechanism of NO synthesis. Thirty-two male adult New Zealand white rabbits were anesthetized with intravenous (IV) 30 mg/kg pentobarbital followed by 5 mg/kg/hr infusion. All rabbits were subjected to 30 minutes (min) long lasting left anterior descending coronary artery (LAD) occlusion and three hours (hr) of subsequent reperfusion. Before LAD occlusion, the rabbits were randomly allocated into four groups for preconditioning treatment (eight for each group). The control group did not receive any preconditioning treatment. The desflurane group received inhaled desflurane 1.0 MAC (minimal end-tidal alveolar concentration) for 30 min that was followed by a 15 min washout period. The L-NAME-desflurane group received L-NAME (NG-nitro-L-arginine methyl ester; non-selective Nitric Oxide Synthetase (NOS) inhibitor) 1 mg/kg IV 15 min before 1.0 MAC inhaled desflurane for 30 min. The L-NAME group received L-NAME 1 mg/kg IV. Infarct volume, ventricular arrhythmia, plasma lactate dehydrogenase (LDH), creatine kinase (CK) activity and myocardial perfusion were recorded simultaneously. We have found that hemodynamic values of the coronary blood flow before, during, and after LAD occlusion were not significantly different among these four groups. For the myocardial ischemia-reperfusion injury animals, the infarction size (mean +/- SEM) in the desflurane group was significantly reduced to 18 +/- 3% in the area at risk as compared with 42 +/- 7% in the control group, 35 +/- 6 in the L-NAME group, and 34 +/- 4% in the L-NAME-desflurane group. The plasma LDH, CK levels, and duration of ventricular arrhythmia were also significantly decreased in the desflurane group during ischemia-reperfusion injury. Our results indicate that desflurane is an anesthetic preconditioning agent, which could protect the myocardium against the ischemia-reperfusion injury. This beneficial effect of desflurane on the ischemic preconditioning is probably through NO release since L-NAME abrogates the desflurane preconditioning effect.  相似文献   

19.
The cardioprotective effect of SUN 1165, a novel sodium channel blocker, was investigated on ischemic myocardium. Nineteen anesthetized dogs were subjected to 2 hours coronary occlusion, and divided into 2 groups. In the control group, physiological saline was infused. In the SUN 1165 group, 2 mg/kg of SUN 1165 was injected intravenously. Two hours after occlusion, heart mitochondria were prepared from both ischemic and non-ischemic areas in each group, and their functions (RCI and St.III O2) were measured polarographically with succinate as a substrate. Fractionation of myocardial tissue from both non-ischemic and ischemic areas was performed according to the method of Weglicki et al., and the activities of lysosomal enzymes (NAG and beta-gluc) were measured. In the control group, mitochondrial dysfunction and leakage of lysosomal enzymes induced by 2 hours occlusion were observed. Administration of SUN 1165 maintained mitochondrial function, and prevented the leakage of lysosomal enzymes caused by ischemia significantly. These results indicated that SUN 1165 has a cardioprotective effect in ischemic heart.  相似文献   

20.
NO plays an important role in the compensatory increase in coronary flow conductance against myocardial ischemia, and NO bioavailability is impaired in various diseases. We tested the hypothesis that, when NO production is inhibited, vasoconstrictor signals from the ischemic myocardium are unmasked. We investigated the involvement of endothelin type A (ETA) receptors in the transduction of the constrictor signal. To detect coronary vasoactive signals derived from ischemic myocardium, we used a bioassay system in which an isolated rabbit coronary microvessel (detector vessel, DV) was placed on beating myocardium perfused by the left anterior descending coronary artery (LAD) of an anesthetized open-chest dog (n = 38). The DV was pressurized to 60 cmH2O throughout the experiment and observed with an intravital microscope equipped with a floating objective. After the intrinsic tone of the DV was established, vehicle (n = 7), Nomega-nitro-L-arginine (L-NNA, 100 micromol/l; n = 13), L-NNA + BQ-123 (a selective ETA receptor blocker, 1 micromol/l; n = 7), or BQ-123 alone (1 micromol/l; n = 7) was superfused onto the DV. Thereafter, the LAD of the beating heart was occluded. Coronary occlusion produced significant dilation of the DV by 10 +/- 4%. When L-NNA was applied, the DV significantly constricted by 12 +/- 5% in response to LAD occlusion, and BQ-123 abolished the vasoconstriction. Pretreatment with BQ-123 alone produced an enhancement of the ischemia-induced dilation. We conclude that ischemic myocardium releases transferable vasomotor signals that produce coronary microvascular constriction during the blockade of NO production and the constrictor signal is mediated by ETA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号