首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Genes reported to be crucial for spermatogenesis are often exclusively expressed in the testis. We have identified a novel male germ cell-specific expressed gene named peroxisomal testis specific 1 (Pxt1) with expression starting at the spermatocyte stage during mouse spermatogenesis. The putative amino acid sequence encoded by the cDNA of the Pxt1 gene contains a conserved Asn-His-Leu (NHL)-motif at its C-terminal end, which is characteristic for peroxisomal proteins. Pxt1-EGFP fusion protein is co-localized with known peroxisomal marker proteins in transfected NIH3T3 cells. In addition, we could demonstrate that the peroxisomal targeting signal NHL is functional and responsible for the correct subcellular localization of the Pxt1-EGFP fusion protein. In male germ cells peroxisomes were reported only in spermatogonia. The Pxt1 gene is so far the first gene coding for a putative peroxisomal protein which is expressed in later steps of spermatogenesis, namely in pachytene spermatocytes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
In eukaryotes, mRNA is actively exported to the cytoplasm by a family of nuclear RNA export factors (NXF). Four Nxf genes have been identified in the mouse: Nxf1, Nxf2, Nxf3, and Nxf7. Inactivation of Nxf2, a germ cell-specific gene, causes defects in spermatogenesis. Here we report that Nxf3 is expressed exclusively in Sertoli cells of the postnatal testis, in a developmentally regulated manner. Expression of Nxf3 coincides with the cessation of Sertoli cell proliferation and the beginning of their differentiation. Continued expression of Nxf3 in mature Sertoli cells of the adult is spermatogenesis stage-independent. Nxf3 is not essential for spermatogenesis, however, suggesting functional redundancy among Nxf family members. With its unique expression pattern in the testis, the promoter of Nxf3 can be used to drive postnatal Sertoli cell-specific expression of other proteins such as Cre recombinase.  相似文献   

9.
A novel gene Ggnbp1 was identified during yeast two-hybrid screening of gametogenetin protein 1 (GGN1)-interacting proteins. Ggnbp1 gene was found in mouse, rat, and human genomes but not in sequenced yeast, worms, fly, or fish genomes. Northern blotting analysis revealed that the gene was specifically expressed in the testis but not expressed in the other tissues. In situ hybridization showed that it was testicular germ cell-specific and was specifically expressed in later primary spermatocytes, meiotic cells, and early round spermatids. Western blotting analysis detected a protein of expected size in and only in the testis. By making membrane and cytosolic fractions of germ cells, we were able to show that GGNBP1 associated with the membrane. The identification and characterization of a novel germ cell-specific gene Ggnbp1 is the first step toward the defining of the functions of Ggnbp1 in spermatogenesis.  相似文献   

10.
11.
12.
The Hedgehog (Hh) signaling pathway plays an important role in various biological processes, including pattern formation, cell fate determination, proliferation, and differentiation. Hh function is mediated through its membrane receptor Patched. Herein, we have characterized a novel Patched-domain containing gene Ptchd3 in mouse. Messenger RNA of Ptchd3 was exclusively detected in the testis, and existed in two isoforms Ptchd3a and Ptchd3b. The expression of these two mRNA isoforms was shown to be developmentally regulated in testes, and specifically found in male germ cells. Further analysis revealed that the Ptchd3 protein was located on the midpiece of mouse, rat and human sperm. Collectively, these results indicate that Ptchd3 is a novel male germ cell-specific gene and may be involved in the Hh signaling to regulate sperm development and/or sperm function.  相似文献   

13.
14.
Estrogens--male hormones?   总被引:3,自引:0,他引:3  
The cytochrome P450 aromatase is the terminal enzyme responsible for the irreversible transformation of androgens into estrogens; it is present in the endoplasmic reticulum membrane of cells and rather ubiquitous in its localization. The aromatase gene is unique in humans and its expression is regulated in a cell-specific manner via the alternative use of various promoters located in the first exon I of the CYP19 gene. The aromatase gene expression and its translation into a fully active protein have been shown in most of the testicular cells including germ cells as well as in the epithelial cells of the epididymis in mammals. Together with the widespread distribution of estrogen receptors (ERalpha and ERbeta) in the genital tract of the male, a physiological role for estrogens in the regulation of mammalian reproductive functions including the regulation of gonadotropin feedback, is now well recognized. Moreover, in men the aromatase deficiency is associated with severe bone maturation problems, alterations of lipid and sugar metabolism and sterility; but conversely an excess of estrogens is responsible for the impairment of spermatogenesis. In addition, estrogens play an important role in the control of osteoporosis and of atherosclerosis, especially in elderly men. Consequently, estradiol seems to be a critical factor not only for normal reproduction (at least for maturation and survival of germ cells) but also for various physiological processes and thus, estrogens should be now considered as "male hormones".  相似文献   

15.
16.
17.
To determine the mechanisms of spermatogenesis, it is essential to identify and characterize germ cell-specific genes. Here we describe a protein encoded by a novel germ cell-specific gene, Mm.290718/ZFP541, identified from the mouse spermatocyte UniGene library. The protein contains specific motifs and domains potentially involved in DNA binding and chromatin reorganization. An antibody against Mm.290718/ZFP541 revealed the existence of the protein in testicular spermatogenic cells (159 kDa) but not testicular and mature sperm. Immunostaining analysis of cells at various stages of spermatogenesis consistently showed that the protein is present in spermatocytes and round spermatids only. Transfection assays and immunofluorescence studies indicate that the protein is localized specifically in the nucleus. Proteomic analyses performed to explore the functional characteristics of Mm.290718/ZFP541 showed that the protein forms a unique complex. Other major components of the complex included histone deacetylase 1 (HDAC1) and heat-shock protein A2. Disappearance of Mm.290718/ZFP541 was highly correlated with hyperacetylation in spermatids during spermatogenesis, and specific domains of the protein were involved in the regulation of interactions and nuclear localization of HDAC1. Furthermore, we found that premature hyperacetylation, induced by an HDAC inhibitor, is associated with an alteration in the integrity of Mm.290718/ZFP541 in spermatogenic cells. Our results collectively suggest that the Mm.290718/ZFP541 complex is implicated in chromatin remodeling during spermatogenesis, and we provide further information on the previously unknown molecular mechanism. Consequently, we re-designate Mm.290718/ZFP541 as "SHIP1" representing spermatogenic cell HDAC-interacting protein 1.  相似文献   

18.
Mammalian spermatogenesis is a highly regulated system dedicated to the continuous production of spermatozoa from spermatogonial stem cells, and the process largely depends on microenvironments created by Sertoli cells, unique somatic cells that reside within a seminiferous tubule. Spermatogenesis progresses with a cyclical program known as the "seminiferous epithelial cycle," which is accompanied with cyclical gene expression changes in Sertoli cells. However, it is unclear how the cyclicity in Sertoli cells is regulated. Here, we report that Notch signaling, which is known to play an important role for germ cell development in Drosophila and Caenorhabditis elegans, is cyclically activated in Sertoli cells and regulates stage-dependent gene expression of Hes1. To elucidate the regulatory mechanism of stage-dependent Hes1 expression and the role of Notch signaling in mouse spermatogenesis, we inactivated Notch signaling in Sertoli cells by deleting protein O-fucosyltransferase 1 (Pofut1), using the cre-loxP system, and found that stage-dependent Hes1 expression was dependent on the activation of Notch signaling. Unexpectedly, however, spermatogenesis proceeded normally. Our results thus indicate that Notch signaling regulates cyclical gene expression in Sertoli cells but is dispensable for mouse spermatogenesis. This highlights the evolutionary divergences in regulation of germ cell development.  相似文献   

19.
20.
H1 linker histones are involved in packaging chromatin into 30-nm fibers and higher order structures. Most eukaryotic cells contain nearly one H1 molecule for each nucleosome core particle. Male germ cells in mammals contain large amounts of a germ cell-specific linker histone, HIST1HT, herein denoted H1t, which is particularly abundant in pachytene spermatocytes. Despite its abundance in male germ cells and significant divergence in primary sequence from other H1 subtypes, inactivation of the H1t gene in mice showed that it is not required for spermatogenesis. Analysis of germ cell chromatin from H1t null mice showed that other H1 subtypes, especially the testis-enriched HIST1H1A, herein denoted as the H1a subtype, were able to compensate for the absence of H1t to maintain a normal total H1 to nucleosome core ratio. To disrupt the compensation, we generated H1t and H1a double null mice by two sequential gene-targeting steps in embryonic stem cells. Elimination of both H1t and H1a led to a 25% decrease in the ratio of H1 to nucleosome cores in double null germ cells. Surprisingly, the reduction in H1 did not perturb spermatogenesis or produce detectable defects in meiotic processes. Microarray analysis of gene expression showed that the reduced linker histone levels did not affect global gene expression, but it did cause changes in expression of specific genes. Our results indicate that a partial reduction in linker histone-nucleosome core particle stoichiometry is tolerated in developing male germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号