首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in ribulose bisphosphate carboxylase (RuBPCase) and proteolytic activity were followed in the flag leaf and second leaf of field-grown winter wheat (cv. Arthur). These changes were followed in relation to changes in leaf chlorophyll, protein, and photosynthesis, and seed development. Levels of RuBPCase were determined by rocket immunoelectrophoresis as described previously (Wittenbach 1978 Plant Physiol 62: 604-608). RuBPCase constituted 40 to 45% of the total soluble protein in the flag leaf and an even higher percentage of the soluble protein in the second leaf. This ratio remained unchanged until senescence when RuBPCase protein was apparently lost at a faster rate than total soluble protein. No change in the specific activity of RuBPCase on either a milligram protein or RuBPCase basis was observed until senescence. A close correlation existed among the various indices of senescence in the field, namely, the decline in chlorophyll, protein, photosynthesis, and RuBPCase activity. In addition, proteinase activity increased with the onset of senescence. These enzymes readily degraded RuBPCase, exhibiting a pH optimum of 4.8 to 5.0 and a temperature optimum of 50 C. Proteinase activity was modified by sulfydryl reagents suggesting the presence of sulfydryl groups at or near the active sites.  相似文献   

2.
A stable freeze-dried powder was prepared of partly purifiedribulose bisphosphate carboxylase from wheat leaves. As withpreparations from other leaves it is necessary to incubate theenzyme with Mg2$ and CO2 to achieve maximum activity. At 25°C this activity was 0.75 IU mg–1 protein for a preparationactivated at 50 °C for 10 min; the Km for CO2 was 15 µM. The time for reactivation of enzyme that had been inactivatedthrough the absence of CO2 and Mg2$ was influenced by the lengthof the inactivating treatment. After a short inactivation periodthe enzyme was reactivated within a few minutes, whereas aftera longer period several hours were needed. Enzyme in the latterstate had some properties in common with enzyme inactivatedby lower temperatures but in the presence of CO2 and Mg2$. Theenzyme kinetic characteristics are similarly affected by bothkinds of inactivation; the maximum velocity is decreased butthe affinity for CO2 is not affected. Reactivation following a long inactivating treatment becomesmore dependent on Mg2$ concentration as the temperature is increasedfrom 0 to 20 °C.  相似文献   

3.
4.
The amounts of ribulose bisphosphate carboxylase protein decreasedrapidly with leaf age to a low content by the middle stage ofsenescence. In contrast, the decrease in chloroplast numberwas slight during the same period. This indicates that the enzymecan be degraded within the chloroplast before the chloroplastsdisintegrate during senescence. (Received September 3, 1983; Accepted November 24, 1983)  相似文献   

5.
Photosynthesis, photorespiration, and ribulose bisphosphatecarboxylase/oxygenase activities were measured in intact flagleaves of wheat during ageing. Photorespiration declined verylittle as the leaves aged, and much less than photosynthesis.These changes could not be explained by changes in the ribulosebisphosphate carboxylase to oxygenase ratio of fraction 1 protein.As the leaves grew older the enzyme activities in extracts ofleaves declined in parallel so the ratio remained constant.  相似文献   

6.
Ribulose bisphosphate carboxylase (EC 4.1.1.39 [EC] ) activity wasvery low in tomato leaf extracts unless prepared in the presenceof Mg2+, and polyclar AT. With young leaves, but not with fully-expanded leaves, the RuBP carboxylase activityextracted was increased by prolonged illumination of the leaves(2 h). The main effect of the light treatment was to increasethe specific activity of the enzyme but there was also a smallincrease in RuBP carboxylase protein. Tomato leaf RuBP carboxylasein extracts had specific activities in the range 0.2–0–6µmol CO2 min–1 mg–-1 total protein extracted,or 0.5–1.2 µmol CO2 min–1 mg–1 RuBPcarboxylase, and an apparent Km (CO2) at 20 ?C of 9.3 ? 1.2µM (using a of 6.407). Key words: Tomato leaf, RuBP carboxylase, Properties  相似文献   

7.
Vu CV  Allen LH  Bowes G 《Plant physiology》1983,73(3):729-734
Soybean (Glycine max L. Merr. cv Bragg) was grown throughout its life cycle at 330, 450, and 800 microliters CO2 per liter in outdoor controlled-environment chambers under solar irradiance. Leaf ribulose-1,5-bisphosphate carboxylase (RuBPCase) activities and ribulose-1,5-bisphosphate (RuBP) levels were measured at selected times after planting. Growth under the high CO2 levels reduced the extractable RuBPCase activity by up to 22%, but increased the daytime RuBP levels by up to 20%.

Diurnal measurements of RuBPCase (expressed in micromoles CO2 per milligram chlorophyll per hour) showed that the enzyme values were low (230) when sampled before sunrise, even when activated in vitro with saturating HCO3 and Mg2+, but increased to 590 during the day as the solar quantum irradiance (photosynthetically active radiation or PAR, in micromoles per square meter per second) rose to 600. The nonactivated RuBPCase values, which averaged 20% lower than the corresponding HCO3 and Mg2+-activated values, increased in a similar manner with increasing solar PAR. The per cent RuBPCase activation (the ratio of nonactivated to maximum-activated values) increased from 40% before dawn to 80% during the day. Leaf RuBP levels (expressed in nanomoles per milligram chlorophyll) were close to zero before sunrise but increased to a maximum of 220 as the solar PAR rose beyond 1200. In a chamber kept dark throughout the morning, leaf RuBPCase activities and RuBP levels remained at the predawn values. Upon removal of the cover at noon, the HCO3 and Mg2+-activated RuBPCase values and the RuBP levels rose to 465 and 122, respectively, after only 5 minutes of leaf exposure to solar PAR at 1500.

These results indicate that, in soybean leaves, light may exert a regulatory effect on extractable RuBPCase in addition to the well-established activation by CO2 and Mg2+.

  相似文献   

8.
Wheat was grown in the field with different levels of nitrogenousfertilizer, and the rate of photosynthesis and the activityof ribulose 1,5-diphosphate carboxylase in the flag leaves determined.Additional nitrogen increased the dry-weight and leaf area ofthe plants, but did not increase grain yield; the rate of photosynthesisof the flag leaves was unchanged but the activity of ribulose1,5-diphosphate carboxylase increased. The significance of theseobservations to the loss of potential yield of wheat and therelationship between, photosynthesis and carboxylase activityis considered.  相似文献   

9.
When 8-day-old wheat seedlings (Triticum aestivum L. var. Chris) are placed in the dark the fully expanded primary leaves undergo the normal changes associated with senescence, for example, loss of chlorophyll, soluble protein, and photosynthetic capacity (Wittenbach 1977 Plant Physiol. 59: 1039-1042). Senescence in this leaf is completely reversible when plants are transferred to the light during the first 2 days, but thereafter it becomes an irreversible process. During the reversible stage of senescence the loss of ribulose bisphosphate carboxylase (RuBPCase) quantitated immunochemically, accounted for 80% of the total loss of soluble protein. There was no significant change in RuBPCase activity per milligram of antibody-recognized carboxylase during this stage despite an apparent decline in specific activity on a milligram of soluble protein basis. With the onset of the irreversible stage of senescence there was a rapid decline in activity per milligram of carboxylase, suggesting a loss of active sites. There was no increase in total proteolytic activity during the reversible stage of senescence despite the loss of carboxylase, indicating that this initial loss was not due to an increase in total activity. An 80% increase in proteolytic activity was correlated with the onset of the irreversible stage and the rapid decline in RuBPCase activity per milligram of carboxylase. Delaying senescence with zeatin reduced the rate of loss of carboxylase and delayed both the onset of the irreversible stage and the increase in proteolytic activity to the same degree, suggesting that these events are closely related. The main proteinases present in wheat and responsible for the increase in activity are the thiol proteinases. These proteinases have a high affinity for RuBPCase, exhibiting an apparent Km at 38 C of 1.8 × 10−7 m. The Km for casein was 1.1 × 10−6 m. If casein is representative of noncarboxylase protein, then the higher affinity for carboxylase may provide an explanation for its apparent preferential loss during the reversible stage of senescence.  相似文献   

10.
At concentrations of CO2 less than saturating, carbonic anhydrase(EC 4.2.1.1 [EC] ) stimulates the carboxylation of ribulose bisphosphatecatalysed by ribulose bisphosphale carboxylase (EC 4.1.1.3 [EC] .9)in vitro. This is not through any beneficial association ofthe two enzymes but is a consequence of the increased rate ofconversion of HCO3 ion to CO2, the substrate for thecarboxylation. Carbonic anhydrase should always be includedin reaction mixtures used to determine the Michaelis constantof ribulose bisphosphate carboxylase for CO2 where fixationof radioactive CO2 into phosphoglycerate is the basis of rateestimation. The effect is to decrease the value obtained forthe Michaelis constant.  相似文献   

11.
The time-dependent, slow inhibition of ribulose bisphosphatecarboxylase (RuBisCO) in the absence of ribulose bisphosphatewas dependent on the concentrations of RuBisCO and xylulosebisphosphate (XuBP). When incubated with excess XuBP, RuBisCOlost its activity gradually with incubation time. When RuBisCOof the concentration of 1.5 µM was incubated with 20 µMXuBP, the activity was inhibited for the initial 10 minutes,after which the activity recovered gradually with time. Therecovery was because XuBP in the incubation mixture was carboxy-latedto form 3-phosphoglycerate. The concentration of XuBP half-saturatingthe XuBP-carb-oxylation reaction of RuBisCO was 12 to 15 µM.The initial inhibition and the subsequent recovery of the activitywere due to the elimination from and re-binding to RuBisCO,respectively, of the activator CO2. (Received April 20, 1991; Accepted May 21, 1991)  相似文献   

12.
1,5二磷酸核酮糖羧化酶/加氧酶(Rubisco)是光合碳同化的关键酶,研究其降解机理对合理调控水稻生长后期光合衰退具有重要意义。前人用人为诱导植物衰老的方法,研究了Rubisco的降解机理,认为该酶降解之前,必需发生亚基间的交联聚合和向类囊体膜转移,这样在结构和空间上有利于水解酶的作用。我们用自然衰老叶片进行研究的结果表明:Rubisco在降解过程中其比活基本保持恒定,意味着未发生酶的失活,也就是说酶结构未发生根本性改变,由此也可初步判断酶未发生亚基间的交联聚合(已证明亚基交联可导致酶失活)。接着用SDSPAGE和蛋白印迹技术证实了上述观点:Rubisco降解之前只有极少量的大亚基聚合体,随后同未聚合大亚基一起很快降解。此外,研究结果进一步表明酶分子在降解之前有少量与叶绿体膜结合,但降解过程中并未见膜结合蛋白增加。根据上述结果我们认为,亚基间交联聚合和向膜转移并非水稻叶片自然衰老时Rubisco降解的必要条件。  相似文献   

13.
Uniculm wheat (Triticum aestivum L.) was grown to maturity at four concentrations of nitrogen corresponding to 3 (N1), 6 (N2), 9 (N3) and 12 (N4) g m–2. Penultimate and flag leaves were examined throughout the ontogeny. Sub-optimal concentrations of N resulted in sharp decline in both area and dry mass of the leaves. Decline in leaf area was due to fewer mesophyll cells. Net photosynthetic rate (PN) increased up to full expansion, remained constant for about a week and then declined. PN, nitrogen, ribulose-1,5-bis-phosphate carboxylase/oxygenase (RuBPCO) amount and activity, chlorophyll and soluble protein contents were similar at all the N concentrations. Both amount and activity of RuBPCO in the flag leaf were about two fold higher as compared to penultimate leaf, but PN was similar. This indicates the presence of an excess amount of RuBPCO in the flag leaf.  相似文献   

14.
Changes in anatomical and physiological features, includingchanges in amount per unit area of anthocyanin and chlorophyll,in leaves of seedling mango (Mangifera indica L. cv. Irwin)trees were determined to understand what controls the rate ofphotosynthesis (Pn) at various stages of development. The youngleaves of seedling trees contained high concentrations of anthocyanin.During enlargement of leaves, the disappearance of anthocyaninand the accumulation of chlorophyll occurred concomitantly;the anthocyanin content began to decrease markedly once theleaf area had reached a maximum. During the early period ofleaf development, the thickness of mesophyll tissue decreasedtemporarily, but when the length of the leaf reached half thatof a mature leaf, the mesophyll began to thicken again. Smallstarch grains appeared in the chloroplasts of the young leavesand chloroplast nucleoids (ct-nuclei) were distributed throughoutthe chloroplasts. When leaves matured, ct-nuclei were displacedto the periphery of chloroplasts because of the accumulationof large starch grains. Compared with young leaves, green andmature leaves contained greater concentrations of ribulose bisphosphatecarboxylase-oxygenase (RuBisCO) protein. The results of immunocytochemicalexamination of RuBisCO under the light microscope reflectedthe results of electrophoresis measurements of RuBisCO. Pn waslow during the chocolate-coloured stage of early leaf development.In green and mature leaves Pn was higher; the average Pn was7·6 mg CO2 dm-2 h-1 under light at intensities above500 µmol m-2 s-1.Copyright 1995, 1999 Academic Press Mangifera indica L., mango leaf, chloroplast nucleoids, chloroplast ultrastructure, starch accumulation, anthocyanin, chlorophyll, DAPI staining, SDS-PAGE, immunocytochemical technique  相似文献   

15.
Photosynthetic carbon assimilation in plants is regulated by activity of the ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase. Although the carboxylase requires CO2 to activate the enzyme, changes in CO2 between 100 and 1,400 microliters per liter did not cause changes in activation of the leaf carboxylase in light. With these CO2 levels and 21% O2 or 1% or less O2, the levels of ribulose bisphosphate were high and not limiting for CO2 fixation. With high leaf ribulose bisphosphate, the Kact(CO2) of the carboxylase must be lower than in dark, where RuBP is quite low in leaves. When leaves were illuminated in the absence of CO2 and O2, activation of the carboxylase dropped to zero while RuBP levels approached the binding site concentration of the carboxylase, probably by forming the inactive enzyme-RuBP complex.

The mechanism for changing activation of the RuBP carboxylase in the light involves not only Mg2+ and pH changes in the chloroplast stroma, but also the effects of binding RuBP to the enzyme. In light when RuBP is greater than the binding site concentration of the carboxylase, Mg2+ and pH most likely determine the ratio of inactive enzyme-RuBP to active enzyme-CO2-Mg2+-RuBP forms. Higher irradiances favor more optimal Mg2+ and pH, with greater activation of the carboxylase and increased photosynthesis.

  相似文献   

16.
Lehnherr, B., Mächler, F. and Nösberger, J. 1985.Influence of temperature on the ratio of ribulose bisphosphatecarboxylase to oxygenase activities and on the ratio of photosynthesisto photorespiration of leaves.—J. exp. Bot. 36: 1117–1125. Rates of net and gross photosynthesis of intact white cloverleaves were measured by infrared gas analysis and by short termuptake of 14CO2 respectively. Ribulose bisphosphate carboxylaseoxygenase (RuBPCO) was purified from young leaves and kineticproperties investigated in combined and separate assays. Theratio of carboxylase to oxygenase activities was compared withthe ratio of photosynthesis to photorespiration at various temperaturesand CO2 concentrations. The ratio of photosynthesis to photorespiration at 30 Pa p(CO2)was consistent with the ratio of carboxylase activity to oxygenaseactivity when each was measured above 20 °C. However, theratio of photosynthesis to photorespiration increased with decreasingtemperature, whereas the ratio of carboxylase to oxygenase activitywas independent of temperature. This resulted in a disagreementbetween the measurements on the purified enzyme and intact leafat low temperature. No disagreement between enzyme and leafat low temperature occurred, when the ratio of photosynthesisto photorespiration was determined at increased CO2 concentrations. The results suggest an effect of low temperature and low CO2concentration on the ratio of photosynthesis to photorespirationindependent of the enzyme. Key words: Ribulose bisphosphate carboxylase oxygenase, photorespiration, temperature  相似文献   

17.
以大穗型小麦品种'兰考矮早8'和多穗型品种'豫麦49-198'为材料,采用盆栽试验研究了不同施氮量对两种穗型冬小麦品种旗叶RuBP(1,5二磷酸核酮糖)羧化酶和PEPC(磷酸烯醇式丙酮酸羧化酶)活性及叶绿素a荧光动力学参数的影响.结果表明,在本试验条件下,随着花后天数的增加,两小麦品种旗叶RuBP羧化酶和PEPC活性总体呈下降趋势;随着施氮量的增加,RuBP羧化酶和PEPC活性呈增加趋势,其中RuBP羧化酶活性多数以N4(N 4.8 g/盆)处理最高,PEPC活性多数以N3(N 3.6 g/盆)处理最高.随着施氮量的增加,两小麦品种旗叶Fv/F0、Fv/Fm和qP均呈增加趋势,且以N4 (N 4.8 g/盆)处理的值最高,并且处理之间的差异达显著水平(P<0.05).研究发现,本试验条件下,适量施用氮肥有利于小麦旗叶RuBP羧化酶和PEPC活性的增加及叶绿素a荧光动力学参数Fv/F0和Fv/Fm的提高,从而有助于光合同化物的积累和小麦穗粒重的提高.  相似文献   

18.
Pyke, K A. and Leech, R. M. 1985. Variation in nbulose 1, 5bisphosphate carboxylase content in a range of winter wheatgenotypes. J. exp. Bot. 36: 1523–1529. Amounts of ribulose 1, 5 bisphosphate carboxylase (RuBPCase;E.C 4.1.1.39 [EC] ) were measured in the first leaves of 14 hexaploidwheat genotypes. The genotypes were representative of winterwheat grown in Britain during the past 150 years. The highest levels of RuBPCase per unit leaf area were foundin semi-dwarf genotypes which had more mesophyll cells per unitleaf area and smaller cells than tall genotypes. There was nosignificant correlation relating the year of introduction ofgenotypes to either the amount of RuBPCase per leaf or the amountper mesophyll cell Semi-dwarf genotypes tended to have smallerleaves and were less variable. Genotypic variation in the cellular content of RuBPCase is discussedin terms of genotypic differences in leaf development and thepotential for maximal RuBPCase accumulation. Key words: —Ribulose bisphosphate carboxylase, semi-dwarf wheat, cell size  相似文献   

19.
Pyke, K. A. and Leech, R. M. 1987. Cellular levels of ribulose1,5 bisphosphate carboxylase and chloroplast compartment sizein wheat mesophyll cells.—J. exp. Bot. 38: 1949–1956. The amount of the photosynthetic enzyme ribulose 1,5 bisphosphatecarboxylase (RUBISCO),as determined in mesophyll cells in primarywheat leaves was related to the size of the chloroplast compartmentwithin the cell for wheat species of three ploidy levels. Asimilar comparison was made for several genotypes of the hexaploidbreadwheat Triticum aestivum. Estimation of total chloroplastvolume per mesophyll cell was made assuming chloroplasts tobe oblate spheroid in shape. A significant correlation was found between the amount of RUBISCOper cell and the total chloroplast volume per cell for diploid,tetraploid and hexaploid wheat species. A significant correlationbetween cellular RUBISCO level and total chloroplast volumeper cell was also observed for a range of genotypes of the hexaploidT. aestivum but these genotypes of T. aestivutn accumulate agreater amount of RUBISCO per unit chloroplast volume than doany other wheat species. For these genotypes of T. aestivumthe stromal concentration of RUBISCO was estimated at 0·5mol m–3 with a ribulose Msphosphate binding site concentrationof 4·0 mol m–3. These results are discussed with respect to a gene dosage hypothesisto explain the accumulation of RUBISCO in leaf mesophyll cells. Key words: Ribulose, bisphosphate carboxylase, wheat chloroplasts, mesophyll cells  相似文献   

20.
CO2 gas exchange, ribulose-1,5-bisphosphate, and electron transport have been measured in leaves of a yellow-green mutant of wheat (Triticum durum var Cappelli) and its wild type strain grown in the field. All these parameters, expressed on leaf area basis, were similar in both genotypes except electron transport which was more than double in the wild type. These results, treated according to a recent photosynthesis model for C3 plants, seem to indicate that the electron transport rate of mutant leaves is not sufficient to support the carboxylation derived through both the assimilation rate and the in vitro ribulose-1,5-bisphosphate carboxylase activity. It is suggested that under our experimental conditions photosynthetic electron transport is not the sole energy-dependent determinant of ribulose-1,5-bisphosphate regeneration in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号