首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete nucleotide sequence of an 8447 bp-long mercury-resistance transposon (Tn 5053 ) has been determined. Tn 5053 is composed of two modules: (i) the mercury-resistance module and (ii) the transposition module. The mercury-resistance module carries a mer operon, merRTPFAD , and appears to be a single-ended relic of a transposon closely related to the classical mercury-resistance transposons Tn 21 and Tn 501 . The transposition module of Tn 5053 is bounded by 25 bp terminal inverted repeats and contains four genes involved in transposition, i.e. tniA, tniB, tniQ , and tniR . Transposition of Tn 5053 occurs via cointegrate formation mediated by the products of the tniABQ genes, followed by site-specific cointegrate resolution. This is catalysed by the product of the tniR gene at the res region, which is located upstream of tniR . The same pathway of transposition is used by Tn 402 (Tn 5090 ) which carries the integron of R751. Transposition genes of Tn 5053 and Tn 402 are interchangeable. Sequence analysis suggests that Tn 5053 and Tn 402 are representatives of a new family of transposable elements, which fall into a recently recognized superfamily of transposons including retroviruses, insertion sequences of the IS 3 family, and transposons Tn 552 and Tn 7 . We suggest that the tni genes were involved in the dissemination of integrons.  相似文献   

2.
The insertion sequence IS6100, belonging to the IS6 family, normally forms a cointegrate as an end product of transposition. The IS6100-based minitransposon, Tn1792, has been developed as a genetic tool to mutagenise antibiotic-producing Streptomyces. Here, we describe resolution of Tn1792 cointegrates in Streptomyces avermitilis that can facilitate both the initial isolation of Tn1792 insertion mutants and also the subsequent rescue of Tn1792-tagged sequences. This is the first reported example of cointegrate resolution for an IS6-type transposable element. As a result of mutagenesis, several putative genes involved in morphological development and antibiotic production have been isolated.  相似文献   

3.
We have measured the frequency of Tn9 transposition and cointegrate formation in several different ways and have examined the stability of the cointegrates. We have also physically analyzed the structure of 40 independently derived cointegrate molecules. We present evidence here that Tn9, unlike the transposable element Tn3, does not transpose via an obligate cointegrate intermediate. We suggest that transposition of Tn9 leads to two, mutually exclusive, end-products: either direct insertion of the element into a recipient replicon (transposition), or fusion between donor and recipient replicons (cointegrate formation). This conclusion is based on our observations that, while Tn9-mediated cointegrates are very stable, they are formed at a rate lower than the transposition frequency. This finding is discussed in terms of current models for transposition.We also present evidence that clearly demonstrates the compound nature of Tn9. We find that the individual flanking IS1 elements are more active than the entire Tn9 transposon in cointegrate formation. In addition, we find that one IS1 element that is proximal to the cam gene promoter, is more active than the other, and suggest that the difference in activity might be due to differences in nucleotide sequence at their extremities.  相似文献   

4.
D R Hyde  C P Tu 《Cell》1985,42(2):629-638
We have identified a new gene, tnpM, in Tn21 that encodes the 12.6 kilodalton modulator protein. The Tn21 modulator enhances Tn21 transposition and suppresses resolution of cointegrate replicons in vivo. A putative binding site may be located in the N-terminal portion of the TnpR (resolvase) structural gene sequences. Tn501 transposition and cointegrate resolution can be regulated by the subcloned tnpM gene of Tn21 in trans-complementation experiments. Examination of the Tn501 DNA sequence also reveals a potential tnpM coding sequence upstream of the Tn501 resolvase gene. We conclude that Tn21 and Tn501 are different from Tn3 and Tn1000 both in genome organization and in regulation of transposition functions.  相似文献   

5.
We report a technique which uses the cointegrate intermediate of transposon Tn1000 transposition as a means to lower the copy number of ColE1-type plasmids. The transposition of Tn1000 from one replicon to another is considered a two-step process. In the first step, the transposon-encoded TnpA protein mediates fusion of the two replicons to produce a cointegrate. In the second step, the cointegrate is resolved by site-specific recombination between the two transposon copies to yield the final transposition products: the target replicon with an integrated transposon plus the regenerated donor replicon. Using in vitro techniques, the DNA sequence of the Tn1000 transposon was altered so that cointegrate formation occurs but resolution by the site-specific recombination pathway is blocked. When this transposon was resident on an F factor-derived plasmid, a cointegrate was formed between a multicopy ColE1-type target plasmid and the conjugative F plasmid. Conjugational transfer of this cointegrate into a polA strain resulted in a stable cointegrate in which replication from the ColE1 plasmid origin was inhibited and replication proceeded only from the single-copy F factor replication origin. We assayed isogenic strains which harbored plasmids encoding chloramphenicol acetyltransferase to measure the copy number of such F factor-ColE1-type cointegrate plasmids and found that the copy number was decreased to the level of single-copy chromosomal elements. This method was used to study the effect of copy number on the expression of the fabA gene (which encodes the key fatty acid-biosynthetic enzyme beta-hydroxydecanoylthioester dehydrase) by the regulatory protein encoded by the fadR gene.  相似文献   

6.
Randall R. Reed 《Cell》1981,25(3):713-719
Transposition of the insertion element γδ is thought to involve formation of intermediates in which the element is present at each junction between donor and target replicons. In vivo these cointegrate structures are rapidly converted to the end products of transposition by site-specific recombination at a defined sequence, res, that is present in each directly repeated γδ element. Resolvase, an element encoded protein of molecular weight 21,000 is required for cointegrate resolution. I have demonstrated site-specific recombination in vitro using purified resolvase and a cointegrate analog substrate. The required components of the system described here are resolvase, negatively supercoiled substrate DNA, buffer and Mg2+. Neither host-encoded products nor high energy cofactors appear to be required for resolution in vitro. Catenated, resolved molecules are the major products of the reaction. Elimination of Mg2+ from the reaction yields different product molecules. The in vitro system described here provides an opportunity for detailed study of the resolution reaction.  相似文献   

7.
D A Stetler  S T Jacob 《Biochemistry》1985,24(19):5163-5169
Poly(A) polymerases were purified from the cytosol fraction of rat liver and Morris hepatoma 3924A and compared to previously purified nuclear poly(A) polymerases. Chromatographic fractionation of the hepatoma cytosol on a DEAE-Sephadex column yielded approximately 5 times as much poly(A) polymerase as was obtained from fractionation of the liver cytosol. Hepatoma cytosol contained a single poly(A) polymerase species [48 kilodaltons (kDa)] which was indistinguishable from the hepatoma nuclear enzyme (48 kDa) on the basis of CNBr cleavage maps. Liver cytosol contained two poly(A) polymerase species (40 and 48 kDa). The CNBr cleavage patterns of these two enzymes were distinct from each other. However, the cleavage pattern of the 40-kDa enzyme was similar to that of the major liver nuclear poly(A) polymerase (36 kDa), and approximately three-fourths of the peptide fragments derived from the 48-kDa species were identical with those from the hepatoma enzymes (48 kDa). NI-type protein kinases from liver or hepatoma stimulated hepatoma nuclear and cytosolic poly(A) polymerases 4-6-fold. In contrast, the liver cytosolic 40- and 48-kDa poly(A) polymerases were stimulated only slightly or inhibited by similar units of the protein kinases. Antibodies produced in rabbits against purified hepatoma nuclear poly(A) polymerase reacted equally well with hepatoma nuclear and cytosolic enzyme but only 80% as well with the liver cytosolic 48-kDa poly(A) polymerase and not at all with liver cytosolic 40-kDa or nuclear 36-kDa enzymes. Anti-poly(A) polymerase antibodies present in the serum of a hepatoma-bearing rat reacted with hepatoma nuclear and cytosolic poly(A) polymerases to the same extent but only 40% as well with the liver cytosolic 48-kDa enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Structure and stability of transposon 5-mediated cointegrates   总被引:5,自引:0,他引:5  
We have determined the structure of a set of independently derived, Tn5-mediated cointegrates and examined the stability of several examples. A variety of cointegrate structures was found, including those mediated by the entire compound transposon, and those mediated by a single flanking IS50 element, which was always IS50-R, and never IS50-L. IS50-R but not IS50-L is reported to code for a protein(s) required for transposition. This finding confirms that IS50-L is relatively inactive and suggests that the active transposition protein(s) acts largely in cis on IS50-R. Another class of cointegrate was created by inverse transposition of Tn5 (using the inside ends of the flanking elements). In addition, we found an unexpectedly large set of cointegrates, in which the joint between the two plasmids was not adjacent to the transposon. All cointegrates analysed were found to be stable. This suggests that Tn5, unlike the transposon Tn3, does not transpose via an obligate cointegrate intermediate. This finding is compared to previous results with Tn5 and Tn9, and is discussed in terms of current models of transposition.  相似文献   

9.
Deletions in transposon Tn7 either abolished transposition or reduced transposition frequency. Except for a deletion in the right-hand terminus, these deletions could be complemented in trans. A 2.1-kilobase fragment of Tn7 encodes a diffusible gene product which stimulates transposition above the wild-type frequency. No cointegrate formation was detected.  相似文献   

10.
IS1 is one of the smallest transposable elements found in bacteria (768 bp). It contains eight overlapping open-reading-frames (ORFs) greater than 50 codons, designated insA to insG and insB'. To determine which of the ORFs actually code for proteins involved in transposition, we have introduced amber codons into each ORF by site-directed mutagenesis which make neutral changes in the overlapping ORFs. Each mutant IS1 was then tested for its ability to mediate cointegrate formation in Su+ and Su- backgrounds. The mutant elements were also tested for trans-complementation in an IS1-free Salmonella background. Our results show that the products of the insA and insB genes are the only ones essential for cointegrate formation. We suggest that other ORFs may, however, encode accessory proteins.  相似文献   

11.
M J Casadaban  J Chou  S N Cohen 《Cell》1982,28(2):345-354
Five single base pair mutations that increase expression of the tnpA (transposase) gene of the Tn3 transposon approximately 30-fold, but which still allow the gene to be regulated, have been isolated by using a generally applicable procedure that involves distally linked lac gene fusions. The mutations, which are all located in a region controlling initiation of translation of the tnpA gene, do not affect normal repression of tnpA by the tnpR gene product, and yield up to a 9000-fold increase in tnpA protein production when combined with a tnpR mutation and placed on a high copy number plasmid. The mutation yielding the highest expression level was separated from the fused lac gene segment by homologous recombination and was found to increase the rate of transposition without altering the nature of the transposition product; in cells defective in both the E. coli recA gene and the tnpR gene of tn3, cointegrate transposition-intermediate structures occur with the overproducing--as well as with the wild-type--tnpA gene. In the presence of a functional Tn3 tnpR gene or the related transposon delta gamma, such cointegrate structures are resolved into the final products of transposition.  相似文献   

12.
A study was made of the transposition of the mercury resistance transposon Tn5041 which, together with the closely related toluene degradation transposon Tn4651, forms a separate group in the Tn3 family. Transposition of Tn5041 was host-dependent: the element transposed in its original host Pseudomonas sp. KHP41 but not in P. aeruginosa PAO-R and Escherichia coli K12. Transposition of Tn5041 in these strains proved to be complemented by the transposase gene (tnpA) of Tn4651. The gene region determining the host dependence of Tn5041 transposition was localized with the use of a series of hybrid (Tn5041 x Tn4651) tnpA genes. Its location in the 5'-terminal one-third of the transposase gene is consistent with the data that this region is involved in the formation of the transposition complex in transposons of the Tn3 family. As in other transposons of this family, transposition of Tn5041 occurred via cointegrate formation, suggesting its replicative mechanism. However, neither of the putative resolution proteins encoded by Tn5041 resolved the cointegrates formed during transposition or an artificial cointegrate in E. coli K12. Similar data were obtained with the mercury resistance transposons isolated from environmental Pseudomonas strains and closely related to Tn5041 (Tn5041 subgroup).  相似文献   

13.
Z. Eichenbaum  Z. Livneh 《Genetics》1995,140(3):861-874
Interplasmid and chromosome to plasmid transposition of IS10 were studied by assaying inactivation of the phage 434 cI gene, carried on a low copy number plasmid. This was detected by the activity of the tet gene expressed from the phage 434 P(R) promoter. Each interplasmid transposition resulted in the fusion of the donor and acceptor plasmids into cointegrate structure, with a 9-bp duplication of the target DNA at the insertion site. Cointegrate formation was abolished in δrecA strains, although simple insertions of IS10 were observed. This suggests a two-stage mechanism involving IS10 conservative transposition, followed by homologous recombination between the donor and the acceptor. Two plasmids carrying inactive IS10 sequences were fused to cointegrates at a 100-fold lower frequency, suggesting that homologous recombination is coupled to and stimulated by the transposition event. Each IS10 transposition from the chromosome to the acceptor plasmid involved replicon fusion, providing a mechanism for IS10-mediated integration of extrachromosomal elements into the chromosome. This was accompanied by the formation of an additional copy of IS10 in the chromosome. Thus, like replicative transposition, conservative transposition of IS10 is accompanied by cointegrate formation and results in duplication of the IS10.  相似文献   

14.
R Craigie  K Mizuuchi 《Cell》1985,41(3):867-876
Mu transposition works efficiently in vitro and generates both cointegrate and simple insert products. We have examined the reaction products obtained under modified in vitro reaction conditions that do not permit efficient initiation of DNA replication. The major product is precisely the intermediate structure predicted from one of the current models of DNA transposition. Both cointegrates and simple inserts can be made in vitro using this intermediate as the DNA substrate, demonstrating that it is indeed a true transposition intermediate. The requirements for efficient formation of the intermediate include the Mu A protein, the Mu B protein, an unknown number of E. coli host proteins, ATP, and divalent cation. Only E. coli host proteins are required for conversion of the intermediate to cointegrate or simple insert products. Structures resulting from DNA strand transfer at only one end of the transposon are not observed, suggesting that the strand transfers at each end of the transposon are tightly coupled.  相似文献   

15.
Vacuolar H+-ATPases (V-ATPases) mediate the acidification of multiple intracellular compartments, including secretory granules in which an acidic milieu is necessary for prohormone processing. A search for genes coordinately expressed with the prohormone proopiomelanocortin (POMC) in the melanotrope cells of Xenopus intermediate pituitary led to the isolation of a cDNA encoding the complete amino-acid sequence of the type I transmembrane V-ATPase accessory subunit Ac45 (predicted size 48 kDa). Comparison of Xenopus and mammalian Ac45 sequences revealed conserved regions in the protein that may be of functional importance. Western blot analysis showed that immunoreactive Ac45 represents a approximately 40-kDa product that is expressed predominantly in neuroendocrine tissues; deglycosylation resulted in a approximately 27-kDa immunoreactive Ac45 product which is smaller than predicted for the intact protein. Biosynthetic studies revealed that newly synthesized Xenopus Ac45 is an N-glycosylated protein of approximately 60 kDa; the nonglycosylated, newly synthesized form is approximately 46 kDa which is similar to the predicted size. Immunocytochemical analysis showed that in Xenopus pituitary, Ac45 is highly expressed in the biosynthetically active melanotrope cells. We conclude that the regionally conserved Xenopus Ac45 protein is synthesized as an N-glycosylated approximately 60-kDa precursor that is intracellularly cleaved to an approximately 40-kDa product and speculate that it may assist in the V-ATPase-mediated acidification of neuroendocrine secretory granules.  相似文献   

16.
The staphylococcal beta-lactamase transposon Tn552 is a member of a novel group of transposable elements. The organization of genes in Tn552 resembles that of members of the Tn21 sub-group of Tn3 family transposons, which transpose replicatively by cointegrate formation and resolution. Thus, a possible resolution site ('resL') and a resolvase gene (tnpR or 'binL') have been identified. However, consistent with the fact that Tn552 generates 6 bp (rather than 5 bp) flanking direct repeats of target DNA, neither the putative transposase protein, nor the terminal inverted repeats of Tn552 are homologous to those of Tn3 elements. Tn552, like phage Mu and retroelements, is defined by the terminal dinucleotides 5' TG .. CA 3'. A naturally occurring staphylococcal plasmid, pI9789, contains a Tn552-derived resolution system ('resR-binR') that acts as a 'hotspot' for Tn552 transposition; insertion creates a segment of DNA flanked by inversely repeated resolution sites, one (resR) on pI9789 and the other (resL) on Tn552. The putative Tn552 resolvase, the most closely related of known resolvases to the homologous DNA invertases, initially was identified as a DNA invertase ('Bin') as a result of its ability to mediate efficient inversion of this segment in vivo.  相似文献   

17.
Is10 Promotes Adjacent Deletions at Low Frequency   总被引:4,自引:2,他引:2       下载免费PDF全文
Some transposable elements move by a replicative mechanism involving cointegrate formation. Intramolecular cointegration can generate a product called an ``adjacent deletion' in which a contiguous chromosomal segment adjacent to the transposon is deleted while the element responsible remains intact. Insertion sequence IS10 is thought to transpose by a nonreplicative mechanism. In the simplest models, nonreplicative transposition cannot give rise to an adjacent deletion because an intrinsic feature of such transposition is excision of the IS element from the donor location. We report here that IS10 can generate adjacent deletions, but at a frequency which is approximately 1/30th the frequency of transposition for the same element. We suggest that these deletions might arise either by nonreplicative transposition events that involve two IS10 elements located on sister chromosomes or by aberrant nonreplicative events involving cleavage and ligation at only one end of the element.  相似文献   

18.
Z Eichenbaum  Z Livneh 《Genetics》1998,149(3):1173-1181
A new mutagenesis assay system based on the phage 434 cI gene carried on a low-copy number plasmid was used to investigate the effect of UV light on intermolecular transposition of IS10. Inactivation of the target gene by IS10 insertion was detected by the expression of the tet gene from the phage 434 PR promoter, followed by Southern blot analysis of plasmids isolated from TetR colonies. UV irradiation of cells harboring the target plasmid and a donor plasmid carrying an IS10 element led to an increase of up to 28-fold in IS10 transposition. Each UV-induced transposition of IS10 was accompanied by fusion of the donor and acceptor plasmid into a cointegrate structure, due to coupled homologous recombination at the insertion site, similar to the situation in spontaneous IS10 transposition. UV radiation also induced transposition of IS10 from the chromosome to the target plasmid, leading almost exclusively to the integration of the target plasmid into the chromosome. UV induction of IS10 transposition did not depend on the umuC and uvrA gene product, but it was not observed in lexA3 and DeltarecA strains, indicating that the SOS stress response is involved in regulating UV-induced transposition. IS10 transposition, known to increase the fitness of Escherichia coli, may have been recruited under the SOS response to assist in increasing cell survival under hostile environmental conditions. To our knowledge, this is the first report on the induction of transposition by a DNA-damaging agent and the SOS stress response in bacteria.  相似文献   

19.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

20.
Chloroplast translation is mediated by nucleus-encoded factors that interact with distinct cis-acting RNA elements. A U-rich sequence within the 5' untranslated region of the psbD mRNA has previously been shown to be required for its translation in Chlamydomonas reinhardtii. By using UV cross-linking assays, we have identified a 40-kDa RNA binding protein, which binds to the wild-type psbD leader, but is unable to recognize a nonfunctional leader mutant lacking the U-rich motif. RNA binding is restored in a chloroplast cis-acting suppressor. The functions of several site-directed psbD leader mutants were analyzed with transgenic C. reinhardtii chloroplasts and the in vitro RNA binding assay. A clear correlation between photosynthetic activity and the capability to bind RNA by the 40-kDa protein was observed. Furthermore, the data obtained suggest that the poly(U) region serves as a molecular spacer between two previously characterized cis-acting elements, which are involved in RNA stabilization and translation. RNA-protein complex formation depends on the nuclear Nac2 gene product that is part of a protein complex required for the stabilization of the psbD mRNA. The sedimentation properties of the 40-kDa RNA binding protein suggest that it interacts directly with this Nac2 complex and, as a result, links processes of chloroplast RNA metabolism and translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号