首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The explicit contribution to the free energy barrier and proton conductance from the delocalized nature of the excess proton is examined in aquaporin channels using an accurate all-atom molecular dynamics computer simulation model. In particular, the channel permeation free energy profiles are calculated and compared for both a delocalized (fully Grotthuss shuttling) proton and a classical (nonshuttling) hydronium ion along two aquaporin channels, Aqp1 and GlpF. To elucidate the effects of the bipolar field thought to arise from two alpha-helical macrodipoles on proton blockage, free energy profiles were also calculated for computational mutants of the two channels where the bipolar field was eliminated by artificially discharging the backbone atoms. Comparison of the free energy profiles between the proton and hydronium cases indicates that the magnitude of the free energy barrier and position of the barrier peak for the fully delocalized and shuttling proton are somewhat different from the case of the (localized) classical hydronium. The proton conductance through the two aquaporin channels is also estimated using Poisson-Nernst-Planck theory for both the Grotthuss shuttling excess proton and the classical hydronium cation.  相似文献   

2.
Chen H  Wu Y  Voth GA 《Biophysical journal》2007,93(10):3470-3479
The structural properties of the influenza A virus M2 transmembrane channel in dimyristoylphosphatidylcholine bilayer for each of the four protonation states of the proton-gating His-37 tetrad and their effects on proton transport for this low-pH activated, highly proton-selective channel are studied by classical molecular dynamics with the multistate empirical valence-bond (MS-EVB) methodology. The excess proton permeation free energy profile and maximum ion conductance calculated from the MS-EVB simulation data combined with the Poisson-Nernst-Planck theory indicates that the triply protonated His-37 state is the most likely open state via a significant side-chain conformational change of the His-37 tetrad. This proposed open state of M2 has a calculated proton permeation free energy barrier of 7 kcal/mol and a maximum conductance of 53 pS compared to the experimental value of 6 pS. By contrast, the maximum conductance for Na(+) is calculated to be four orders of magnitude lower, in reasonable agreement with the experimentally observed proton selectivity. The pH value to activate the channel opening is estimated to be 5.5 from dielectric continuum theory, which is also consistent with experimental results. This study further reveals that the Ala-29 residue region is the primary binding site for the antiflu drug amantadine (AMT), probably because that domain is relatively spacious and hydrophobic. The presence of AMT is calculated to reduce the proton conductance by 99.8% due to a significant dehydration penalty of the excess proton in the vicinity of the channel-bound AMT.  相似文献   

3.
Jiancong Xu 《BBA》2006,1757(7):852-859
The molecular mechanism for proton conduction in the D-pathway of Cytochrome c Oxidase (CcO) is investigated through the free energy profile, i.e., potential of mean force (PMF) calculations of both the native enzyme and the N98D mutant. The multistate empirical valence bond (MS-EVB) model was applied to simulate the interaction of an excess proton with the channel environment. In the study of the wild type enzyme, the PMF reveals the previously proposed proton trap inside the channel; it also shows a high free energy barrier against the passage of proton at the entry of the channel, where two conserved asparagines (ASN80/98) may be essential for the gating of proton uptake. We also present data from an investigation of the N98D mutant, which has been previously shown to completely eliminate proton pumping but significantly enhance the oxidase activity in Rhodobacter sphaeroides. These results suggest that mutating Asn98 to negatively charged aspartate will create an unfavorable energy barrier sufficiently high to prevent the overall proton uptake through the D-pathway, whereas with a protonated aspartic acid the proton conduction was found to be accelerated. Plausible explanations for the origin of the uncoupling of proton pumping from the oxidase activity will be discussed.  相似文献   

4.
The molecular mechanism for proton conduction in the D-pathway of Cytochrome c Oxidase (CcO) is investigated through the free energy profile, i.e., potential of mean force (PMF) calculations of both the native enzyme and the N98D mutant. The multistate empirical valence bond (MS-EVB) model was applied to simulate the interaction of an excess proton with the channel environment. In the study of the wild type enzyme, the PMF reveals the previously proposed proton trap inside the channel; it also shows a high free energy barrier against the passage of proton at the entry of the channel, where two conserved asparagines (ASN80/98) may be essential for the gating of proton uptake. We also present data from an investigation of the N98D mutant, which has been previously shown to completely eliminate proton pumping but significantly enhance the oxidase activity in Rhodobacter sphaeroides. These results suggest that mutating Asn98 to negatively charged aspartate will create an unfavorable energy barrier sufficiently high to prevent the overall proton uptake through the D-pathway, whereas with a protonated aspartic acid the proton conduction was found to be accelerated. Plausible explanations for the origin of the uncoupling of proton pumping from the oxidase activity will be discussed.  相似文献   

5.
A new model of cellular transport is presented, characterized by selective fluxes due to membrane fluidity gradient. This mechanism is treated in terms of the interfacial tensions at the membrane/cytoplasm and membrane/medium surfaces. A higher interior fluidity (lower interfacial tension) is maintained by cytoplasm adenosine triphosphate, which adsorbs and increases lipoprotein fluidity while it also chelates calcium and keeps it from inner membrane sites. The high medium calcium causes a stiffer membrane (higher interfacial tension) on the medium side. These two different free energy barriers at inner and outer channel mouths filter all molecules, whether ionized or nonelectrolytic. Molecules with excess of hydrophobic groups, which makes negative the free energy of transfer from the medium into the membrane, have highest influx. Intermolecular salt linkages and hydrogen-bonding are vital in making negative the free energy of transfer of amino acids and sugars. The much lower energy barrier at the cytoplasmic interface favors net efflux from the cell of the more polar ions and amphipaths. Intramembrane particles are proposed as the channel sites.  相似文献   

6.
The structural and dynamical properties of a solvated proton in the influenza A virus M2 channel are studied using a molecular dynamics (MD) simulation technique. The second-generation multi-state empirical valence bond (MS-EVB2) model was used to describe the interaction between the excess proton and the channel environment. Solvation structures of the excess proton and its mobility characteristics along the channel were determined. It was found that the excess proton is capable of crossing the channel gate formed by the ring of four histidine residues even though the gate was only partially open. Although the hydronium ion itself did not cross the channel gate by traditional diffusion, the excess proton was able to transport through the ring of histidine residues by hopping between two water molecules located at the opposite sides of the gate. Our data also indicate that the proton diffusion through the channel may be correlated with the changes in channel conformations. To validate this observation, a separate simulation of the proton in a "frozen" channel has been conducted, which showed that the proton mobility becomes inhibited.  相似文献   

7.
A model of active ion transport is analyzed in which an essential part of the pumps molecule is an ion channel. Ion translocation in the channel is described as a series of jumps between binding sites which are separated by energy barriers. Pumping action results from a transient energy-dependent modification of the barrier structure of the channel and requires only minor conformational changes of the pump molecule. This model is applied to the light-driven proton pump of Halobacterium and to redox-coupled proton pumps in the mitochondrial respiratory chain. Similar considerations may be used to describe ATP-dependent ion transport.  相似文献   

8.
A model of active ion transport is analyzed in which an essential part of the pump molecule is an ion channel. Ion translocation in the channel is described as a series of jumps between binding sites which are separated by energy barriers. Pumping action results from a transient energy-dependent modification of the barrier structure of the channel and requires only minor conformational changes of the pump molecule. This model is applied to the lightdriven proton pump of Halobacterium and to redox-coupled proton pumps in the mitochondrial respiratory chain. Similar considerations may be used to describe ATP-dependent ion transport.  相似文献   

9.
The structural and dynamical properties of a hydrated proton near the surface of DMPC membrane were studied using a molecular dynamics simulation. The proton transport between water molecules was modeled using the second generation multistate empirical valence bond model. The proton diffusion was found to be inhibited at the membrane surface. The potential of mean force for the proton adsorption to the membrane surface and its release back into the bulk water was also determined, yielding a small barrier in each direction. An efficient algorithm for Ewald summation calculations for the multistate empirical valence bond model is also introduced.  相似文献   

10.
Thermodynamics and energy coupling in the bacteriorhodopsin photocycle   总被引:18,自引:0,他引:18  
G Váró  J K Lanyi 《Biochemistry》1991,30(20):5016-5022
Time-resolved absorption changes of photoexcited bacteriorhodopsin were measured with a gated multichannel analyzer between 100 ns and 100 ms at six temperatures between 5 and 30 degrees C. The energetics of the chromophore reaction cycle were analyzed on the basis of a model containing a single cycle and reversible reactions. The calculated thermodynamic parameters provide insights to general principles of the active transport. They indicate that in this light-driven proton pump the free energy is retained after absorption of the photon as the enthalpy of the pKa shift in the chromophore which allows deprotonation of the Schiff base. Part of the excess free energy is dissipated at the "switch" step where the reaction and transport cycles are coupled, and the rest at the chromophore recovery step. All other reactions take place near equilibrium. The "switch" step is the M1----M2 transition in the reaction cycle [Váró, G., & Lanyi, J. K. (1991) Biochemistry (preceeding paper in this issue)]. It provides for return of the chromophore pKa to its initial value so the Schiff base will become a proton acceptor, for reordering access of the Schiff base from one side of the membrane to the other, and for unidirectionality of the proton transfer. Conformational energy of the protein, acquired during the "switch" step, drives the completion of the photocycle.  相似文献   

11.
Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H+ proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.  相似文献   

12.
Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/18:1c9-palmitoyloleylphosphatidylethanolamine membrane was used for the simulations. During the simulations, water molecules pass through the channel in single file. The movement of the single file water molecules through the channel is concerted, and we show that it can be described by a continuous-time random-walk model. The integrity of the single file remains intact during the permeation, indicating that a disrupted water chain is unlikely to be the mechanism of proton exclusion in aquaporins. Specific hydrogen bonds between permeating water and protein at the channel center (at two conserved Asp-Pro-Ala "NPA" motifs), together with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite water translocation in single file and blocks proton transport. Furthermore, we find that for permeation of a cation, ion-protein electrostatic interactions are more unfavorable at the conserved NPA motifs than at the conserved Arg, suggesting that the major barrier against proton transport in aquaporins is faced at the NPA motifs.  相似文献   

13.
Cytochrome oxidase catalyzes the reduction of O2 to water and conserves the considerable free energy available from this reaction in the form of a proton motive force. For each electron, one proton is electrogenically pumped across the membrane. Of particular interest is the mechanism by which the proton pump operates. Previous studies of the oxidase from Rhodobacter sphaeroides have shown that all of the pumped protons enter the enzyme through the D channel and that a point mutant, N139D, in the D channel completely eliminates proton pumping without reducing oxidase activity. N139 is one of three asparagines near the entrance of the D channel, where there is a narrowing or neck, through which a single file of water molecules pass. In the current work, it is shown that replacement of a second asparagine in this region by an asparate, N207D, also decouples the proton pump without altering the oxidase activity of the enzyme. Previous studies demonstrated that the N139D mutant results in an increase in the apparent pKa of E286, a functionally critical residue that is located 20 A away from N139 at the opposite end of the D channel. In the current work, it is shown that the N207 mutation also increases the apparent pKa of E286. This finding reinforces the proposal that the elimination of proton pumping is the result of an increase of the apparent proton affinity of E286, which, in turn, prevents the timely proton transfer to a proton accepter group within the exit channel of the proton pump.  相似文献   

14.
Chen H  Wu Y  Voth GA 《Biophysical journal》2006,90(10):L73-L75
The permeation free-energy profile and maximum ion conductance of proton transport along the channel of three aquaporin-1 (AQP1) mutants (H180A/R195V, H180A, and R195V) are calculated via molecular dynamics simulations and Poisson-Nernst-Planck theory. The proton dynamics was described by the multistate empirical valence bond (MS-EVB) model. The results reveal three major contributions to the overall free-energy barrier for proton transport in AQP1: 1), the bipolar field, 2), the electrostatic repulsion due to the Arg-195 residue, and 3), the dehydration penalty due to the narrow channel pore. The double mutation (H180A/R195V) drastically drops the overall free-energy barrier by roughly 20 kcal/mol via simultaneously relaxing the direct electrostatic interaction (by R195V) and dehydration effect (by H180A).  相似文献   

15.
Wu Y  Voth GA 《Biophysical journal》2003,85(2):864-875
Classical molecular dynamics simulations using the multistate empirical valence bond model for aqueous proton transport were performed to characterize the hydration structure of an excess proton inside a leucine-serine synthetic ion channel, LS2. For such a nonuniform pore size ion channel, it is found that the Zundel ion (H(5)O(2)(+)) solvation structure is generally more stable in narrow channel regions than in wider channel regions, which is in agreement with a recent study on idealized hydrophobic proton channels. However, considerable diversity in the relative stability of the Zundel to Eigen cation (H(9)O(4)(+)) was observed. Three of the five wide channel regions, one located at the channel's center and the other two located near the channel mouths, are found to show extraordinary preference for the Eigen solvation structure. This implies that proton hopping is inhibited in these regions and therefore suggests that these regions may behave as barriers in the proton conducting pathway inside the channel. The proton solvation is also greatly influenced by the local molecular environment of the protein. In particular, the polar side chains of the Ser residues, which are intimately involved in the solvation structure, can greatly influence proton solvation. However, no preference of the influence by the various Ser side chains was found; they can either promote or prevent the formation of certain solvation structures.  相似文献   

16.
An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.  相似文献   

17.
In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies.  相似文献   

18.
Aquaporins are an important class of membrane channels selective for water and linear polyols but impermeable to ions, including protons. Recent computational studies have revealed that the relay of protons through the water-conduction pathway of aquaporin channels is opposed by a substantial free energy barrier peaking at the signature NPA motifs. Here, free-energy simulations and continuum electrostatic calculations are combined to examine the nature and the magnitude of the contribution of specific structural elements to proton blockage in the bacterial glycerol uptake facilitator, GlpF. Potential of mean-force profiles for both hop and turn steps of structural diffusion in the narrow pore are obtained for artificial variants of the GlpF channel in which coulombic interactions between the pore contents and conserved residues Asn68 and Asn203 at the NPA signature motifs, Arg206 at the selectivity filter, and the peptidic backbone of the two half-helices M3 and M7, which are arranged in head-to-head fashion around the NPA motifs, are turned off selectively. A comparison of these results with electrostatic energy profiles for the translocation of a probe cation throughout the water permeation pathway indicates that the free-energy profile for proton movement inside the narrow pore is dominated by static effects arising from the distribution of charged and polar groups of the channel, whereas dielectric effects contribute primarily to opposing the access of H+ to the pore mouths (desolvation penalty). The single most effective way to abolish the free-energy gradients opposing the movement of H+ around the NPA motif is to turn off the dipole moments of helices M3 and M7. Mutation of either of the two NPA Asn residues to Asp compensates for charge-dipole and dipole-dipole effects opposing the hop and turn steps of structural diffusion, respectively, and dramatically reduces the free energy barrier of proton translocation, suggesting that these single mutants could leak protons.  相似文献   

19.
The mobility of protons in a dioxolane-linked gramicidin A channel (D1) is comparable to the mobility of protons in aqueous solutions (Cukierman, S., E. P. Quigley, and D. S. Crumrine. 1997. Biophys. J. 73:2489-2502). Aliphatic alcohols decrease the mobility of H+ in aqueous solutions. In this study, the effects of methanol on proton conduction through D1 channels were investigated in different lipid bilayers and at different HCl concentrations. Methanol attenuated H+ currents in a voltage-independent manner. Attenuation of proton currents was also independent of H+ concentrations in solution. In phospholipid bilayers, methanol decreased the single channel conductance to protons without affecting the binding affinity of protons to bilayers. In glycerylmonooleate membranes, the attenuation of single channel proton conductances qualitatively resembled the decrease of conductivities of HCl solutions by methanol. However, in both types of lipid bilayers, single channel proton conductances through D1 channels were considerably more attenuated than the conductivities of different HCl solutions. This suggests that methanol modulates single proton currents through D1 channels. It is proposed that, on average, one methanol molecule binds to a D1 channel, and attenuates H+ conductance. The Gibbs free energy of this process (DeltaG0) is approximately 1.2 kcal/mol, which is comparable to the free energy of decrease of HCl conductivity in methanol solutions (1.6 kcal/mol). Apolar substances like urea and glucose that do not transport protons in HCl solutions and do not permeate D1 channels decreased solution conductivity and single channel conductance by a considerably larger proportion than methanol. Cs+ currents through D1 channels were considerably less (fivefold) attenuated by methanol than proton currents. It is proposed that methanol partitions inside the pore of gramicidin channels and delays the transfer of protons between water and methanol molecules, causing a significant attenuation of the single channel proton conductance. Gramicidin channels offer an interesting experimental model to study proton hopping along a single chain of water molecules interrupted by a single methanol molecule.  相似文献   

20.
The mechanism of proton exclusion in the aquaporin-1 water channel   总被引:11,自引:0,他引:11  
Aquaporins are efficient, yet strictly selective water channels. Remarkably, proton permeation is fully blocked, in contrast to most other water-filled pores which are known to conduct protons well. Blocking of protons by aquaporins is essential to maintain the electrochemical gradient across cellular and subcellular membranes. We studied the mechanism of proton exclusion in aquaporin-1 by multiple non-equilibrium molecular dynamics simulations that also allow proton transfer reactions. From the simulations, an effective free energy profile for the proton motion along the channel was determined with a maximum-likelihood approach. The results indicate that the main barrier is not, as had previously been speculated, caused by the interruption of the hydrogen-bonded water chain, but rather by an electrostatic field centered around the fingerprint Asn-Pro-Ala (NPA) motif. Hydrogen bond interruption only forms a secondary barrier located at the ar/R constriction region. The calculated main barrier height of 25-30 kJ mol(-1) matches the barrier height for the passage of protons across pure lipid bilayers and, therefore, suffices to prevent major leakage of protons through aquaporins. Conventional molecular dynamics simulations additionally showed that negatively charged hydroxide ions are prevented from being trapped within the NPA region by two adjacent electrostatic barriers of opposite polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号