首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

3.
Previous studies demonstrate that the delta-like (dlk) and preadipocyte factor 1 (Pref-1) genes encode similar proteins. Pref-1 is downregulated during adipocyte differentiation, and expression of ectopic Pref-1 inhibits adipogenesis. We explored whether dlk functions similarly to Pref-1 and studied the role of alternately spliced dlk variants encoding membrane-associated or -secreted forms. We also studied whether enforced downregulation of dlk/Pref-1 may enhance the differentiation response of non-committed cells. Ectopic expression of a potentially secreted dlk variant, conditioned media from dlk expressing cells or several individual epidermal-growth-factor-dlk peptides inhibited 3T3-L1 differentiation. This demonstrates that dlk and Pref-1 are functionally equivalent. dlk gene mRNA encoding for secreted variants decreased much faster than total dlk gene mRNA during differentiation of 3T3-L1 cells. In fact, total dlk or membrane-associated dlk protein expression increased during the first hours of differentiation. Cells sorted for lowest levels of dlk protein diminished or lost their ability to differentiate. These data suggest that membrane and secreted dlk protein variants play opposite roles in the control of adipogenesis. In addition, enforced downregulation of dlk protein expression in the weakly adipogenic Balb/c 3T3 cell line dramatically enhanced adipogenesis in response to insulin. These results indicate that dlk protein not only participates in processes leading to inhibition of adipogenesis but that the control of its expression and different spliced variants is essential for the adipogenic response to extracellular signals.  相似文献   

4.
5.
White adipose tissue is an important endocrine organ involved in the control of whole-body metabolism, insulin sensitivity, and food intake. To better understand these functions, 3T3-L1 cell differentiation was studied by using combined proteomic and genomic strategies. The proteomics approach developed here exploits velocity gradient centrifugation as an alternative to isoelectric focusing for protein separation in the first dimension. A 20- to 30-fold increase in the concentration of numerous mitochondrial proteins was observed during adipogenesis, as determined by mass spectrometry and database correlation analysis. Light and electron microscopy confirmed a large increase in the number of mitochondrion profiles with differentiation. Furthermore, mRNA profiles obtained by using Affymetrix GeneChips revealed statistically significant increases in the expression of many nucleus-encoded mitochondrial genes during adipogenesis. Qualitative changes in mitochondrial composition also occur during adipose differentiation, as exemplified by increases in expression of proteins involved in fatty acid metabolism and of mitochondrial chaperones. Furthermore, the insulin sensitizer rosiglitazone caused striking changes in mitochondrial shape and expression of selective mitochondrial proteins. Thus, although mitochondrial biogenesis has classically been associated with brown adipocyte differentiation and thermogenesis, our results reveal that mitochondrial biogenesis and remodeling are inherent to adipose differentiation per se and are influenced by the actions of insulin sensitizers.  相似文献   

6.
7.
8.
9.
Since insulin receptors and their downstream signaling molecules are organized in lipid rafts, proteomic analysis of adipocyte lipid rafts may provide new insights into the function of lipid rafts in adipogenesis and insulin signaling. To search for proteins involved in adipocyte differentiation and insulin signaling, we analyzed detergent‐resistant lipid raft proteins from 3T3‐L1 preadipocytes and adipocytes by 2‐DE. Eleven raft proteins were identified from adipocytes. One of the adipocyte‐specific proteins was globular C1q receptor (gC1qR), an acidic 32 kDa protein known as the receptor for the globular domain of complement C1q. The targeting of gC1qR into lipid rafts was significantly increased during adipogenesis, as determined by immunoblotting and immunofluorescence. Since the silencing of gC1qR by small RNA interference abolished adipogenesis and blocked insulin‐induced activation of insulin receptor, insulin receptor substrate‐1 (IRS‐1), Akt, and Erk1/2, we can conclude that gC1qR is an essential molecule involved in adipogenesis and insulin signaling.  相似文献   

10.
11.
Regulation of adipocyte differentiation and insulin action with rapamycin   总被引:6,自引:0,他引:6  
Here, we demonstrated that inhibition of mTOR with rapamycin has negative effects on adipocyte differentiation and insulin signaling. Rapamycin significantly reduced expression of most adipocyte marker genes including PPARgamma, adipsin, aP2, ADD1/SREBP1c, and FAS, and decreased intracellular lipid accumulation in 3T3-L1 and 3T3-F442A cells, suggesting that rapamycin would affect both lipogenesis and adipogenesis. Contrary to the previous report that suppressive effect of rapamycin on adipogenesis is limited to the clonal expansion, we revealed that its inhibitory effect persisted throughout the process of adipocyte differentiation. Thus, it is likely that constitutive activation of mTOR might be required for the execution of adipogenic programming. In differentiated 3T3-L1 adipocytes, chronic treatment of rapamycin blunted the phosphorylation of AKT and GSK, which is stimulated by insulin, and reduced insulin-dependent glucose uptake activity. Taken together, these results suggest that rapamycin not only prevents adipocyte differentiation by decrease of adipogenesis and lipogenesis but also downregulates insulin action in adipocytes, implying that mTOR would play important roles in adipogenesis and insulin action.  相似文献   

12.
Intracellular proteins are degraded by a number of proteases, including the ubiquitin-proteasome pathway (UPP). Impairments in the UPP occur during the aging of a variety of tissues, although little is known in regards to age-related alterations to the UPP during the aging of adipose tissue. The UPP is known to be involved in regulating the differentiation of a variety of cell types, although the potential changes in the UPP during adipose differentiation have not been fully elucidated. How the UPP is altered in aging adipose tissue and adipocyte differentiation and the effects of proteasome inhibition on adipocyte homeostasis and differentiation are critical issues to elucidate experimentally. Adipogenesis continues throughout the life of adipose tissue, with continual differentiation of preadipocytes essential to maintaining tissue function during aging, and UPP alterations in mature adipocytes are likely to directly modulate adipose function during aging. In this study we demonstrate that aging induces alterations in the activity and expression of principal components of the UPP. Additionally, we show that multiple changes in the UPP occur during the differentiation of 3T3-L1 cells into adipocytes. In vitro data link observed UPP alterations to increased levels of oxidative stress and altered adipose biology relevant to both aging and differentiation. Taken together, these data demonstrate that changes in the UPP occur in response to adipose aging and adipogenesis and strongly suggest that proteasome inhibition is sufficient to decrease adipose differentiation, as well as increasing oxidative stress in mature adipocytes, both of which probably promote deleterious effects on adipose aging.  相似文献   

13.
Phosphatidylethanolamine N-methyltransferase (PEMT) is a small integral membrane protein that converts phosphatidylethanolamine (PE) into phosphatidylcholine (PC). It has been previously reported that, unexpectedly, PEMT deficiency protected from high-fat diet (HFD)-induced obesity and insulin resistance, pointing to a possible role of this enzyme in the regulation of adipose cell metabolism. Using mouse 3T3-L1 preadipocytes as a biological system, we demonstrate that PEMT expression is strongly increased during the differentiation of preadipocytes into mature adipose cells. Knockdown of PEMT reduced the expression of early and late adipogenic markers, inhibited lipid droplet formation, reduced triacylglycerol content and decreased the levels of leptin release from the adipocytes, suggesting that PEMT is a novel and relevant regulator of adipogenesis. Investigation into the mechanisms whereby PEMT regulates adipocyte differentiation revealed that extracellularly regulated kinases (ERK1/2) and AKT are essential factors in this process. Specifically, the activities of ERK1/2 and AKT, which are decreased during adipocyte differentiation, were elevated upon Pemt knockdown. Moreover, treatment of cells with exogenous ceramide 1-phosphate (C1P), which we reported to be a negative regulator of adipogenesis, decreased PEMT expression, suggesting that PEMT is also a relevant factor in the anti-adipogenic action of C1P. Altogether, the data presented here identify PEMT as a novel regulator of adipogenesis and a mediator of the anti-adipogenic action of C1P.  相似文献   

14.
The changes in protein composition and cell surface proteins that occur during the adipocyte conversion of 3T3-L1 preadipocytes were monitored by two-dimensional polyacrylamide gel electrophoresis folowing incubation of cells with [35S]methionine for periods of 3 and 24 h. Alterations in the biosynthesis of more than 30 cytoplasmic proteins, 9 non-histone, chromosome-associated proteins, and 24 membrane proteins, were detected. Although the methodological limitations of the electrophoretic systems employed result in an underestimate of the total number of differences, the alterations observed exceed the enzyme changes known to occur during differentiation of these cells. One major alteration occurring during differentiation is a decrease in the content of a protein whose position following two-dimensional electrophoresis tentatively identified it as actin. A fall in actin content accompanying adipocyte conversion was confirmed by direct analysis of the DNase 1 inhibitory activity in homogenates prepared from cells during the course of differentiation. Studies of cell surface proteins by lactoperoxidase-catalyzed iodination reveal a number of changes during differentiation including an increase in a polypeptide(s) in the molecular weight range of 16,500 to 18,500, a decrease in at least four proteins of molecular weights greater than 100,000, and in a protein of molecular weight 95,000.  相似文献   

15.
16.
Adult mice abundantly express neudesin, an extracellular heme-binding protein with neurotrophic activity, in white adipose tissues. At the early stage of adipocyte differentiation during adipogenesis, however, the expression of neudesin decreased transiently. Neudesin-hemin significantly suppressed adipogenesis in 3T3-L1 cells. The knockdown of neudesin by RNA interference markedly promoted adipogenesis in 3T3-L1 cells and decreased MAPK activation during adipocyte differentiation. The addition or knockdown of neudesin affected the expression of C/EBPα and PPARγ but not of C/EBPβ. These findings suggest that neudesin plays a critical role in the early stage of adipocyte differentiation in which C/EBPβ induces PPARγ and C/EBPα expressions, by controlling the MAPK pathway.  相似文献   

17.
We report here that octanoate, a medium chain fatty acid, induces adipocyte differentiation in 3T3-L1 cells by co-treatment with dexamethasone, although octanoate has been known not to stimulate 3T3-L1 adipogenesis. A low concentration of exogenous glucose prevented 3T3-L1 adipogenesis induced by 1-methyl 3-isobutylxanthine, dexamethasone, and insulin (MDI) treatment (a common protocol for adipocyte differentiation). In contrast, co-treatment with dexamethasone and octanoate (D-OCT) induced adipogenesis under the same conditions. These findings imply that octanoate, rather than glucose, is the source of accumulated lipids in D-OCT-induced adipogenesis. D-OCT increased expression of the differentiation markers peroxisome proliferator-activated receptor (PPAR)gamma2 and caveolin-1. A specific inhibitor of p38 mitogen-activated protein (MAP) kinase inhibited D-OCT-induced adipogenesis. These results suggest that the p38 MAP kinase pathway followed by up-regulation of PPARgamma2 may be involved in 3T3-L1 adipocyte differentiation induced by D-OCT, as well as by MDI.  相似文献   

18.
19.
Mycophenolic acid (MPA)-induced β-cell toxicity is an important factor for islet graft function. The signal transduction mechanisms underlying this process have not been fully explored. Using a proteomics approach, we examined protein expression patterns in MPA-treated RIN-5 cells and found that RhoGDI-α expression is altered by MPA-treatment. We examined the relationship between RhoGDI-α expression and activated JNK during MPA-induced apoptosis. Cells were treated with N-acetyl-cysteine (NAC), caspase inhibitor, JNK inhibitor, guanosine or GTP for 1 h before being treated with MPA. To investigate the regulatory effects of RhoGDI-α on JNK activity, we examined cells showing either elevated or reduced expression of RhoGDI-α as a result of transfection with cDNA or siRNA constructs, respectively. MPA significantly increased cell death, caspase-3 expression and JNK activation, but it decreased the expression of a protein spot 25 observed by two-dimensional electrophoresis. This protein 25 was identified as RhoGDI-α by mass spectrometry. MPA-induced cell death and down-regulation of RhoGDI-α were prevented by guanosine, GTP or a JNK inhibitor. However, MPA-induced cell death was partially restored by treatment with a caspase inhibitor, but not by NAC treatment. RhoGDI-α expression was not affected by treatment with NAC or caspase inhibitor. Over-expression of RhoGDI-α increased cell viability and decreased activated JNK expression following exposure to MPA, whereas knockdown of RhoGDI-α enhanced MPA-induced cell death and increased the activation of JNK. In conclusion, MPA induces significant apoptosis in insulin-secreting cells via down-regulation of RhoGDI-α linked with increased JNK expression. This RhoGDI-α/JNK pathway might be the focus of therapeutic target for the prevention of MPA-induced islet apoptosis.  相似文献   

20.
Western blot analysis of 3T3-L1 adipocyte proteins using an anti-C/EBPalpha antibody detected a 24kD polypeptide in addition to the expected 42 and 30kD isoforms of C/EBPalpha. Mass spectrometric sequencing of the protein following its purification by HPLC and preparative 2D gel electrophoresis identified it as glutathione S-transferase zeta/maleylacetoacetate isomerase (GSTzeta/MAAI). Expression of GSTzeta/MAAI mRNA and protein was induced during the terminal phase of adipogenesis in 3T3-L1 preadipocytes. Ectopic expression of PPARgamma2 in NIH-3T3 fibroblasts exposed to insulin and troglitazone-induced perilipin production, but was incapable of activating GSTzeta/MAAI unless C/EBPalpha was also expressed. Similarly, ectopic expression of C/EBPalpha in PPARgamma +/- or PPARgamma -/- MEFs demonstrated that the C/EBPalpha-dependent induction of GSTzeta/MAAI production was dependent on expression of endogenous PPARgamma. These data suggest a role for GSTzeta/MAAI in mature adipocytes that may be responsive to the thiazolidinedione class of insulin sensitizing PPARgamma ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号