首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We compared intraoral prey transport in venomous snake species from four families (two atractaspidids, nine elapids, three colubrids, 44 viperids) with that in eight non-venomous colubrid species, most feeding on similar mammalian prey. The morphology of the venom delivery system suggests that intraoral prey transport performance should be slightly decreased in atractaspidids, unmodified in most elapids and venomous colubrids, and increased or unmodified in vipers, as compared to that in non-venomous colubrid snakes. Our measurements of relative intraoral prey transport performance show that differences among families do not match expectations based on morphology or past studies. Decreased performance in Atractaspis results from reduction and loss of teeth on the medial palatal elements and dentaries, but affects only early phases of ingestion. Although joint and bone features of elapids and colubrids are similar, intraoral prey transport performance is significantly lower in elapids than in colubrids. Predicted enhancement of intraoral prey transport performance in vipers as compared to colubrids was not borne out by measurements, presumably because palatopterygoid movement during intraoral prey transport is reduced in many viper species to limit fang erection. Absence of significant performance differences between colubrids and viperids might suggest that evolution of the viperid venom delivery system was subject to little selection pressure from intraoral prey transport. Another possibility is that there are trade-offs between intraoral prey transport and strike performance in vipers related to relative skull mass and jaw fragility. Immobilizing prey prior to intraoral transport places less demand on transport performance in vipers. In this model, the conservative kinesis and greater robustness of the colubrid palate has greater potential for transporting live prey with less risk of injury.  相似文献   

2.
We explored variations in the morphology and function of the envenomation system in the four families of snakes comprising the Colubroidea (Viperidae, Elapidae, Atractaspididae, and Colubridae) using our own prey capture records and those from the literature. We first described the current knowledge of the morphology and function of venom delivery systems and then explored the functional plasticity found in those systems, focusing on how the propensity of snakes to release prey after the strike is influenced by various ecological parameters. Front-fanged families (Viperidae, Elapidae, and Atractaspididae) differ in the morphology and topographical relationships of the maxilla as well as in the lengths of their dorsal constrictor muscles (retractor vomeris; protractor, retractor, and levator pterygoidei; protractor quadrati), which move the bones comprising the upper jaw, giving some viperids relatively greater maxillary mobility compared to that of other colubroids. Rear-fanged colubrids vary in maxillary rotation capabilities, but most have a relatively unmodified palatal morphology compared to non-venomous colubrids. Viperids launch rapid strikes at prey, whereas elapids and colubrids use a variety of behaviors to grab prey. Viperids and elapids envenomate prey by opening their mouth and rotating both maxillae to erect their fangs. Both fangs are embedded in the prey by a bite that often results in some retraction of the maxilla. In contrast, Atractaspis (Atractaspididae) envenomates prey by extruding a fang unilaterally from its closed mouth and stabbing it into the prey by a downward-backwards jerk of its head. Rear-fanged colubrids envenomate prey by repeated unilateral or bilateral raking motions of one or both maxillae, some aspects of which are kinematically similar to the envenomation behavior in Atractaspis. The envenomation behavior, including the strike and prey release behaviors, varies within families as a function of prey size and habitat preference. Rear-fanged colubrids, arboreal viperids, and elapids tend to hold on to their prey after striking it, whereas atractaspidids and many terrestrial viperids release their prey after striking it. Larger prey are more frequently released than smaller prey by terrestrial front-fanged species. Venom delivery systems demonstrate a range of kinematic patterns that are correlated to sometimes only minor modifications of a common morphology of the jaw apparatus. The kinematics of the jaw apparatus are correlated with phylogeny, but also show functional plasticity relating to habitat and prey.  相似文献   

3.
Published molecular phylogenetic studies of elapid snakes agree that the marine and Australo-Melanesian forms are collectively monophyletic. Recent studies, however, disagree on the relationships of the African, American, and Asian forms. To resolve the relationships of the African, American, and Asian species to each other and to the marine/Australo-Melanesian clade, we sequenced the entire cytochrome b gene for 28 elapids; 2 additional elapid sequences from GenBank were also included. This sample includes all African, American, and Asian genera (except for the rare African Pseudohaje), as well as a representative sample of marine/Australo-Melanesian genera. The data were analyzed by the methods of maximum-parsimony and maximum-likelihood. Both types of analyses yielded similar trees, from which the following conclusions can be drawn: (1) Homoroselaps falls outside a clade formed by the remaining elapids; (2) the remaining elapids are divisible into two broad sister clades, the marine/Australo-Melanesian species vs the African, American, and Asian species; (3) American coral snakes cluster with Asian coral snakes; and (4) the "true" cobra genus Naja is probably not monophyletic as the result of excluding such genera as Boulengerina and Paranaja.  相似文献   

4.
Snakes typically are not considered top carnivores, yet in many ecosystems they are a major predatory influence. A literature search confirmed that terrestrial ectotherms such as snakes are largely absent in most discussions of predator‐prey dynamics. Here, we review classical functional and numerical responses of predator‐prey relationships and then assess whether these traditional views are consistent with what we know of one group of snakes (true vipers and pitvipers: Viperidae). Specifically, we compare behavioural and physiological characteristics of vipers with those of more commonly studied mammalian (endothermic) predators and discuss how functional and numerical responses of vipers are fundamentally different. Overall, when compared to similar‐sized endotherms, our analysis showed that vipers have: (i) lower functional responses owing primarily to longer prey handling times resulting from digestive limitations of consuming large prey and, for some adults, tolerance of fasting; (ii) stronger numerical responses resulting from higher efficiency of converting food into fitness currency (progeny), although this response often takes longer to be expressed; and (iii) reduced capacity for rapid numerical responses to short‐term changes in prey abundance. Given these factors, the potential for viperids to regulate prey populations would most likely occur when prey populations are low. We provide suggestions for future research on key issues in predator‐prey relationships of vipers, including their position within the classical paradigms of functional and numerical responses.  相似文献   

5.
双壳纲贝类18S rRNA基因序列变异及系统发生   总被引:2,自引:0,他引:2  
孟学平  申欣  程汉良  赵娜娜 《生态学报》2011,31(5):1393-1403
双壳纲贝类栖息于环境多变的海域,是一个形态学和生态学都具有多样性的类群,清晰而可靠的进化关系对于养殖与相关种类的管理具重要意义。然而,目前对双壳类宏观分子系统学研究的报道较少。研究用18S rRNA基因(18S)分析了双壳类3个亚纲贝类的系统发育关系。从GenBank下载帘蛤目、海螂目、贻贝目、胡桃蛤目、蚶目、珍珠贝目6个目94个种类的18S全/部分序列107个,通过ClustalX软件进行序列比对, 用MEGA4.1软件和PHyML软件计算遗传距离, 构建系统发育树, 研究了双壳类18S变异规律及其在系统发生研究中的应用。结果显示18S有插入/缺失序列, 存在长度多态性。序列比对显示有5段约30 70bp的保守区, 4段约130 550bp的高变区。碱基组成平均为T:24.4%, C:23.6%, A:24.5%, G:27.5%。G+C含量为51.1%。在1796个比对位点中, 变异位点占31.7%, 简约信息位点占24.0%。目内科间遗传距离为0.003 0.043, 目间遗传距离为0.026 0.093。NJ树和ML树显示贻贝目、珍珠贝目、胡桃蛤目、蚶目和海螂目的缝栖蛤科先分别聚为支持率很高(BPN=94 100)的单系支, 后聚为一大支(BPN=100)。蛤蜊科与帘蛤目的其他科分离形成一置信度很高的单系支(BPN=93)。帘蛤科种类聚为置信度较低(BPN=60)的一支。海螂目、帘蛤目的种类没能完全聚到所属支系, 彼此嵌套,缝栖蛤科的种类从海螂目中分离出来。18S资料揭示帘蛤目的蛤蜊科、海螂目的缝栖蛤科已经进化为独立的支系。  相似文献   

6.
Robert N. Reed 《Ecography》2003,26(1):107-117
Many higher taxa exhibit latitudinal gradients in species richness, geographic range size, and body size. However, these variables are often interdependent, such that examinations of univariate or bivariate patterns alone may be misleading. Therefore, I examined latitudinal gradients in, and relationships between, species richness, geographic range size, and body size among 144 species of New World venomous snakes [families Elapidae (coral snakes) and Viperidae (pitvipers)]. Both lineages are monophyletic, collectively span 99° of latitude, and are extremely variable in body size and geographic range sizes. Coral snakes exhibit highest species richness near the equator, while pitviper species richness peaks in Central America. Species – range size distributions were strongly right-skewed for both families. There was little support for Bergmann's rule or Rapoport's rule for snakes of either family, as neither body size nor range size increased significantly with latitude. However, range area and median range latitude were positively correlated above 15° N, indicating a possible "Rapoport effect" at high northern latitudes. Geographic range size was positively associated with body size. Available continental area strongly influenced range size. Comparative (phylogenetically-based) analyses revealed that shared history is a poor predictor of range size variation within clades. Among vipers, trends in geographic range sizes may have been structured more by historical biogeography than by macroecological biotic factors.  相似文献   

7.
We present an initial evaluation of relationships among a diverse sample of 215 species of snakes (8% of the world snake fauna) representing nine of the 16 commonly-recognized families. Allelic variation at four slow-evolving. protein-coding loci, detected by starch-gel electrophoresis, was found to be informative for estimating relationships among these species at several levels. The numerous alleles detected at these loci [ Arp -2 (42 alleles). Ltlh -2 (43), Mdh -1 (29), Pgm (Z)] provided unexpected clarity in partitioning these taxa. Most congeneric species and several closely-related genera have the same allele at all four loci or differ at only a single locus. At thc other extreme are those species with three or four unique alleles; these taxa cannot be placed in this analysis. Species sharing two or three distinctive alleles are those most clearly separated into clades. Typhlopids, pythonids, viperids, and elapids were resolved into individual clades. whereas bods were separated into boincs and erycines, and colubrids appeared as scveral distinct clades (colubrines, natricines, psammophines, homalopsines, and xenodontines). Viperids were recognized as a major division containing three separate clades: Asian and American crotalines. Pabearctic and Oriental viperines, and Ethiopian causines. The typhlopids were found to be the basal clade, with the North American erycine boid Chrrrino and the West Indian woodsnakes Tropidophi, Y near the base. A number of species and some small clades were not allocated because of uninformative (common, unique, or conflicting) alleles. Of the 21 S species examined, five to eight appear to have been misplaced in the analysis of these electrophoretic data.  相似文献   

8.
Evolutionary relationships among the major elapid clades, particularly the taxonomic position of the partially aquatic sea kraits (Latkauda) and the fully aquatic true sea snakes have been the subject of much debate. To discriminate among existing phylogenetic and biogeographic hypotheses, portions of both the 16S rRNA and cytochrome b mitochondrial DNA genes were sequenced from 16 genera and 17 species representing all major elapid snake clades from throughout the world and two non-elapid outgroups. This sequence data yielded 181 informative sites under parsimony. Parsimony analyses of the separate data sets produced trees of broad agreement although less well supported than the single most parsimonious tree resulting from the combined analyses. These results support the following hypotheses: (1) the Afro-Asian cobra radiation forms one or more sister groups to other elapids, (2) American and Asian coral snakes form a clade, corroborating morphological studies, (3) Bungarus forms a sister group to the hydrophiines comprised of Latkauda, terrestrial Australo-Papuan elapids and true sea snakes, (4) Latkauda and true sea snakes do not form a monophyletic group but instead each group shares an independent history with terrestrial Australo-Papuan elapids, corroborating previous studies, (5) a lineage of Melanesian elapids forms the sister group to Latkauda, terrestrial Australian species and true sea snakes. In agreement with previous morphologically based studies, the sequence data suggests that Bungarus and Latkauda represent transitional clades between the elapine 'palatine erectors' and hydrophiine 'palatine draggers'. Both intra and inter-clade genetic distances are considerable, implying that each of the major radiations have had long independent histories. I suggest an African, Asian, or Afro-Asian origin for elapids as a group, with independent Asian origins for American coral snakes and the hydrophiines.  相似文献   

9.
Dietary Correlates of the Origin and Radiation of Snakes   总被引:5,自引:0,他引:5  
Stomach analyses of living families and of a fossil containingprey were used to address possible dietary correlates of thehistory of snakes. Aniliids, morphologically primitive amongliving snakes, feed on relatively heavy, elongate vertebrates.Large aniliids eat larger prey than do small individuals but,as in advanced snakes, they also take small items. Living boids,structurally intermediate between aniliids and advanced snakes,feed on relatively heavy prey of a much greater variety of shapesthan do aniliids. An Eocene fossil that might be a boid containsa relatively large crocodilian in its gut. These findings, previousstudies, and morphological considerations suggest that veryearly snakes used constriction and powerful jaws to feed onelongate, heavy prey. This would have permitted a shift fromfeeding often on small items to feeding rarely on heavy items,without initially requiring major changes in jaw structure relativeto a lizard-like ancestor. Subsequent morphological changescould then have allowed boids to utilize a broad range of preytypes, including many of those currently eaten by advanced snakes.More recent dietary themes include the consumption of even heavierprey by highly venomous elapids and viperids, and frequent feedingon relatively small items by some other advanced snakes.  相似文献   

10.
11.
Elapids, viperids, and some other groups of colubroid snakes have tubular fangs for the conduction of venom into their prey. The literature describing the development of venom-conducting fangs provides two contradictory accounts of fang development. Some studies claim that the venom canal forms by the infolding of a deep groove along the surface of the tooth to produce an enclosed canal. In other works the tubular fang is said to form by the deposition of material from tip to base, so that the canal develops without any folding. This study was undertaken to examine fang development and to account for the disagreement in the literature by determining whether fang formation varies among groups of venomous snakes and whether it differs between embryos and adults. Adult and embryonic representatives of elapids and viperids were examined. All fangs examined, elapid and viperid, embryos and adults, were found to develop into their tubular shape by the addition of material to the basal end of the tooth rather than by the folding inward of an ungrooved tooth to form a tubular fang. In some cases, the first fang that develops in embryonic snakes differs morphologically from all those formed subsequently.  相似文献   

12.
Examples of acoustic Batesian mimicry are scarce, in contrast to visual mimicry. Here we describe a potential case of acoustic mimicry of a venomous viper model by harmless viperine snakes (colubrid). Viperine snakes resemble vipers in size, shape, colour, pattern, and anti‐predatory behaviours, including head flattening, false strikes, and hissing. We sought to investigate whether hissing evolved as part of, or separately to, the viper mimic syndrome. To do this, we recorded and analysed the hissing sounds of several individual asp vipers, viperine snakes, and grass snakes (a close relative of viperine snakes that hisses but does not mimic the asp viper). Frequencies consistently ranged from 40 to 12 000 Hz across species and individuals. All vipers (100%) and most viperine snakes (84%) produced inhalation hissing sounds, in comparison to only 25% of grass snakes. Inhalation hissing sounds lasted longer in vipers than in viperine snakes. The hissing‐sound composition of grass snakes differed significantly from that of both asp vipers and viperine snakes; however, the hissing‐sound composition between viperine snakes and asp vipers was not statistically distinguishable. Whilst grass snake hissing sounds were characterized by high frequencies (5000–10 000 Hz), both vipers and viperine snake hissing sounds were dominated by low frequencies (200–400 Hz). A principal component analysis revealed no overlap between grass snakes and vipers, but important overlaps between viperine snakes and vipers, and between viperine snakes and grass snakes. The likelihood that these overlaps respectively reflect natural selection for Batesian mimicry and phylogeny constraints is discussed. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1107–1114.  相似文献   

13.
Evolutionary Patterns in Advanced Snakes   总被引:1,自引:0,他引:1  
One prevalent view of phylogenetic events in advanced snakesholds that the fangs evolved along at least two pathways one(e.g. elapids) from ancestors with enlarged anterior and theother (e.g. viperids) from ancestors with enlarged posteriormaxillary teeth. Selective forces driving these changes arepresumed to arise from the increasing advantages of teeth andglands in venom injection. In this paper another plausible viewof these events is proposed. First fangs of both elapids and viperids likely evolved fromreal maxillary teeth. In non-venomous snakes, differences intooth morphology and function suggest that there may be somedivision of labor among anterior and posterior maxillary teeth.Anterior maxillary teeth, residing forward in the mouth likelyserve the biological role of snaring and impaling prey duringthe strike. They are also conical frequently recurved and lacka secretion groove. On the other hand posterior teeth becauseof their geometric position on the maxilla and mechanical advantages,tend to serve as aids in preingestion manipulation and swallowingof prey. They are often blade shaped and occasionally bear asecretion groove along their sides. Although both front andrear maxillary teeth of nonvenomous snakes may be elongatedthis is likely to serve these different functional roles andhence they evolved under different selective pressures. Whenfangs evolved they did so several times independently but fromrear maxillary teeth. In support one notes a) the similar positionpostorbital of venom and Duvernoy s glands b) similar embryonicdevelopment of fangs and rear maxillary teeth c) secretion groovewhen present, is found only on rear teeth and d) similar biologicalroles of some rear teeth and fangs. For ease in clearance ofthe prey during the strike the fangs are positioned forwardin the mouth accomplished in viperid snakes by forward rotationof the maxilla and elapids by rostral anatomical migration tothe front of the maxilla. Second, the adaptive advantage first favoring initial rear toothenlargement likely centered not on their role in venom injectionbut rather on their role in preingestion manipulation and swallowing.However once enlarged, teeth would be preadapted for later modificationinto fangs under selection pressures arising from advantagesof venom introduction. This has implications for the function and evolution of associatedstructures. Besides possibly subduring or even killing of preythe secretion of Duvernoy's gland may be involved in digestionor in neutralizing noxious or fouling products of the prey.The presence or absence of constriction need not be functionallytied to absence or presence of venom injection. The phylogeneticpathways outlined herein were likely traveled several timesindependently in advanced snakes.  相似文献   

14.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

15.
The systematic position and generic differentiation of the morphologically and geographically outstanding tribe Epithemateae (Gesneriaceae) was analyzed using the rbcL/atpB-spacer and trnL-F intron-spacer regions of chloroplast DNA. In our analysis Epithemateae forms a strongly supported monophyletic clade (bootstrap [BS] = 100%; jackknife [JK] = 100%; decay index [DI] = 12) and appears as sister to the rest of the paleotropical Gesneriaceae (= subfamily Cyrtandroideae). The paleotropical Gesneriaceae form a monophyletic group (BS = 88%; JK = 85%; DI = 3) that is sister to the neotropical Gesneriaceae (subfamily Gesnerioideae) plus Austral Gesneriaceae (subfamily Coronantheroideae) (BS = 99%; JK = 98%; DI = 10). Within Epithemateae Rhynchoglossum is sister to the remaining Epithemateae (BS = 97%; JK = 96%; DI = 12), in which Epithema is sister to a clade of two genera: Loxonia/Stauranthera (BS = 68%; JK = 64%; DI = 1), which form, together with Epithema, a sister clade (BS = 85%; JK = 83%; DI = 2) to Whytockia and Monophyllaea. While the support for Loxonia and Stauranthera is moderate, the relationship of Whytockia and Monophyllaea is very strongly supported (BS = 100%; JK = 100%; DI = 13). Apart from the somewhat surprising (but well-substantiated) isolated position of Rhynchoglossum, the results are in perfect accordance with the relationships worked out earlier on grounds of architectural and floral characters. Especially remarkable is the predicted coherence between the morphologically and geographically different genera Whytockia and Monophyllaea.  相似文献   

16.
One of the most prolific radiations of venomous snakes, the Australo-Melanesian Hydrophiinae includes approximately 100 species of Australasian terrestrial elapids plus all approximately 60 species of viviparous sea snakes. Here, we estimate hydrophiine relationships based on a large data set comprising 5800 bp drawn from seven genes (mitochondrial: ND4, cytb, 12S, 16S; nuclear: rag1, cmos, myh). These data were analysed using parsimony, likelihood and Bayesian methods to better resolve hydrophiine phylogeny and provide a timescale for the terrestrial and marine radiations. Among oviparous forms, Cacophis, Furina and Demansia are basal to other Australian elapids (core oxyuranines). The Melanesian Toxicocalamus and Aspidomorphus group with Demansia, indicating multiple dispersal events between New Guinea and Australia. Oxyuranus and Pseudonaja form a robust clade. The small burrowing taxa form two separate clades, one consisting of Vermicella and Neelaps calanotus, and the other including Simoselaps, Brachyurophis and Neelaps bimaculatus. The viviparous terrestrial elapids form three separate groups: Acanthophis, the Rhinoplocephalus group and the Notechis-Hemiaspis group. True sea snakes (Hydrophiini) are robustly united with the Notechis-Hemiaspis group. Many of the retrieved groupings are consistent with previous molecular and morphological analyses, but the polyphyly of the viviparous and burrowing groups, and of Neelaps, are novel results. Bayesian relaxed clock analyses indicate very recent divergences: the approximately 160 species of the core Australian radiation (including sea snakes) arose within the last 10 Myr, with most inter-generic splits dating to between 10 and 6 Ma. The Hydrophis sea snake lineage is an exceptionally rapid radiation, with > 40 species evolving within the last 5 Myr.  相似文献   

17.
Toward the goal of recovering the phylogenetic relationships among elapid snakes, we separately found the shortest trees from the amino acid sequences for the venom proteins phospholipase A2and the short neurotoxin, collectively representing 32 species in 16 genera. We then applied a method we term gene tree parsimony for inferring species trees from gene trees that works by finding the species tree which minimizes the number of deep coalescences or gene duplications plus unsampled sequences necessary to fit each gene tree to the species tree. This procedure, which is both logical and generally applicable, avoids many of the problems of previous approaches for inferring species trees from gene trees. The results support a division of the elapids examined into sister groups of the Australian and marine (laticaudines and hydrophiines) species, and the African and Asian species. Within the former clade, the sea snakes are shown to be diphyletic, with the laticaudines and hydrophiines having separate origins. This finding is corroborated by previous studies, which provide support for the usefulness of gene tree parsimony.  相似文献   

18.
Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences   总被引:9,自引:0,他引:9  
Several families in the beetle suborder Adephaga have an aquatic life style and are commonly grouped in the "Hydradephaga," but their monophyly is contentious and relationships between and within these families are poorly understood. Here we present full-length 18S rRNA sequence for 84 species of Hydradephaga, including representatives of most major groups down to the tribal level, and a total of 68 species of the largest family, Dytiscidae. Using a direct optimization method for the alignment of length-variable regions, the preferred tree topology was obtained when the cost of gaps and the cost of nucleotide changes were equal, and three hypervariable regions of 18S rRNA were downweighted by a factor of five. Confirming recent molecular studies, the Hydradephaga were found to be monophyletic, indicating a single colonization of the aquatic medium. The most basal group within Hydradephaga is Gyrinidae, followed in a comb-like arrangement by families Haliplidae, Noteridae, Amphizoidae, and Hygrobiidae plus Dytiscidae. Under most alignment parameters, Hygrobiidae is placed amid Dytiscidae in an unstable position, suggesting a possible data artifact. Basal relationships within Dytiscidae are not well established, nor is the monophyly of subfamilies Hydroporinae and Colymbetinae. In contrast, relationships at the genus level appear generally well supported. Despite the great differences in the rates of change and the significant incongruence of the phylogenetic signal in conserved vs hypervariable regions of the 18S rRNA gene, both contribute to establish relationships at all taxonomic levels.  相似文献   

19.
The phylogenetic relationships of xenodontine snakes are inferred from sequence analyses of portions of two mitochondrial genes (12S and 16S ribosomal RNA) in 85 species. Although support values for most of the basal nodes are low, the general pattern of cladogenesis observed is congruent with many independent molecular, morphological, and geographical data. The monophyly of xenodontines and the basal position of North American xenodontines in comparison with Neotropical xenodontines are favored, suggesting an Asian-North American origin of xenodontines. West Indian xenodontines (including endemic genera and members of the genus Alsophis) appear to form a monophyletic group belonging to the South American clade. Their mid-Cenozoic origin by dispersal using ocean currents is supported. Within South American mainland xenodontines, the tribes Hydropsini, Pseudoboini, and Xenodontini are monophyletic. Finally, our results suggest that some morphological and ecological traits concerning maxillary dentition, macrohabitat use, and foraging strategy have appeared multiple times during the evolution of xenodontine snakes.  相似文献   

20.
Specializations of the Body Form and Food Habits of Snakes   总被引:2,自引:0,他引:2  
Viperid snakes have stouter bodies, larger heads, and longerjaws than snakes in other families; there are no major differencesbetween the two subfamilies of vipers in these features. A suiteof morphological characters that facilitates swallowing largeprey finds its greatest expression among vipers, but certainelapid and colubrid snakes have converged upon the same bodyform. The number of jaw movements required to swallow prey islinearly related to the size of a prey item when shape is heldconstant. Very small and very large prey are not disproportionatelydifficult for a snake to ingest. Vipers swallow their prey withfewer jaw movements than do colubrids or boids and can swallowprey that is nearly three times larger in relation to theirown size. Proteolytic venom assists in digestion of prey, andmelanin deposits shield the venom glands from light that woulddegrade the venom stores. Ancillary effects of the morphologicalfeatures of vipers, plus the ability to ingest a very largequantity of food in one meal, should produce quantitative andqualitative differences in the ecology and behavior of vipersand other snakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号