首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Anabaena sp. PCC 7120 ManR and a homologous protein of MntH were identified by BLAST search. Recombinant ManR protein was overexpressed in Escherichia coli and purified by an immobilized metal (Ni) affinity chromatography. Electrophoretic mobility shift assays revealed that ManR specifically bound to the promoter region of the mntH gene. Site-directed mutagenesis experiments demonstrated that the specific recognition site for ManR is TATGAAAAGAATATGAGAA, which is composed of two direct repeats of the consensus sequence (T/A)ATGA(G/A)A(A/G). This is a novel regulatory DNA motif in cyanobacteria, indicating that the expression of mntH was regulated by a two-component Mn(2+)-Sensing System containing ManR in Anabaena sp. PCC 7120. To date, this specific pathway of regulating mntH expression has only been found in cyanobacteria.  相似文献   

3.
Cyanobacterial ManR is a member of the OmpR family of response regulator that regulates the expression of themntABC andmntH in response to Mn2+ signals. Single-alanine substitutions of I204, L207 and R208 residues of the ManR, which constituted the DNA recognition helix, were obtained by the overlap extension method of PCR. EMSA was used to detect the complexes of the proteins of ManR mutants I204A, L207A, R208A, and the DNA fragment of promoter region of themntH gene fromAnabaena sp. PCC 7120. Results showed the formation of the complexes of the proteins of ManR mutants and DNA could not be detected, indicating that the mutagenesis of the residues I204, L207 and R208 in the ManR HTH domain could lead to the elimination of DNA binding activity of the ManR. Homologous analysis showed that residues I204, L207 and R208 of the ManR are also conservative in the αhelix 3 region of effector domain of other proteins of OmpR/PhoB subfamily, indicating that they are essential residues for DNA binding activity. No significant alteration between wild type and mutant proteins was detected by Far-UV CD spectra at the secondary structure level.  相似文献   

4.
5.
6.
We performed functional analyses for various single amino-acid substitution variants of Escherichia coli, Bacillus subtilis, and human tRNase Zs. The well-conserved six histidine, His(I)-His(VI), and two aspartate, Asp(I) and Asp(II), residues together with metal ions are thought to form the active site of tRNase Z. The Mn(2+)-rescue analysis for Thermotoga maritima tRNase Z(S) has suggested that Asp(I) and His(V) directly contribute the proton transfer for the catalysis, and a catalytic mechanism has been proposed. However, experimental evidence supporting the proposed mechanism was limited. Here we intensively examined E. coli and B. subtilis tRNase Z(S) variants and human tRNase Z(L) variants for cleavage activities on pre-tRNAs in the presence of Mg(2+) or Mn(2+) ions. We observed that the Mn(2+) ions cannot rescue the activities of Asp(I)Ala and His(V)Ala variants from each species, which are lost in the presence of Mg(2+). This observation may support the proposed catalytic mechanism.  相似文献   

7.
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we crystallized the nuclease domain of colicin E7 (nuclease-ColE7) in complex with its inhibitor Im7 in two different crystal forms, and we resolved the structures of EDTA-treated, Zn(2+)-bound and Mn(2+)-bound complexes in the presence of phosphate ions at resolutions of 2.6 A to 2.0 A. This study offers the first determination of the structure of a metal-free and substrate-free enzyme in the H-N-H family. The H-N-H motif contains two antiparallel beta-strands linked to a C-terminal alpha-helix, with a divalent metal ion located in the center. Here we show that the metal-binding sites in the center of the H-N-H motif, for the EDTA-treated and Mg(2+)-soaked complex crystals, were occupied by water molecules, indicating that an alkaline earth metal ion does not reside in the same position as a transition metal ion in the H-N-H motif. However, a Zn(2+) or Mn(2+) ions were observed in the center of the H-N-H motif in cases of Zn(2+) or Mn(2+)-soaked crystals, as confirmed in anomalous difference maps. A phosphate ion was found to bridge between the divalent transition metal ion and His545. Based on these structures and structural comparisons with other nucleases, we suggest a functional role for the divalent transition metal ion in the H-N-H motif in stabilizing the phosphoanion in the transition state during hydrolysis.  相似文献   

8.
9.
Feng H  Dong L  Cao W 《Biochemistry》2006,45(34):10251-10259
The enzyme endonuclease V initiates repair of deaminated DNA bases by making an endonucleolytic incision on the 3' side one nucleotide from a base lesion. In this study, we have used site-directed mutagenesis to characterize the role of the highly conserved residues D43, E89, D110, and H214 in Thermotoga maritima endonuclease V catalysis. DNA cleavage and Mn(2+)-rescue analysis suggest that amino acid substitutions at D43 impede the enzymatic activity severely while mutations at E89 and D110 may be tolerated. Mutations at H214 yield enzyme that maintains significant DNA cleavage activity. The H214D mutant exhibits little change in substrate specificity or DNA cleavage kinetics, suggesting the exchangeability between His and Asp at this site. DNA binding analysis implicates the involvement of the four residues in metal binding. Mn(2+)-mediated cleavage of inosine-containing DNA is stimulated by the addition of Ca(2+), a metal ion that does not support catalysis. The effects of Mn(2+) on Mg(2+)-mediated DNA cleavage show a complexed initial stimulatory and later inhibitory pattern. The data obtained from the dual metal ion analyses lead to the notion that two metal ions are involved in endonuclease V-mediated catalysis. A catalytic and regulatory two-metal model is proposed.  相似文献   

10.
11.
12.
13.
Phosphotriesterase, isolated from the soil-dwelling bacterium Pseudomonas diminuta, catalyzes the detoxification of organophosphate-based insecticides and chemical warfare agents. The enzyme has attracted significant research attention in light of its possible employment as a bioremediation tool. As naturally isolated, the enzyme is dimeric. Each subunit contains a binuclear zinc center that is situated at the C-terminal portion of a "TIM" barrel motif. The two zincs are separated by approximately 3.4 A and coordinated to the protein via the side chains of His 55, His 57, His 201, His 230, Asp 301, and a carboxylated Lys 169. Both Lys 169 and a water molecule (or hydroxide ion) serve to bridge the two zinc ions together. Interestingly, these metals can be replaced with cadmium or manganese ions without loss of enzymatic activity. Here we describe the three-dimensional structures of the Zn(2+)/Zn(2+)-, Zn(2+)/Cd(2+)-, Cd(2+)/Cd(2+)-, and Mn(2+)/Mn(2+)-substituted forms of phosphotriesterase determined and refined to a nominal resolution of 1.3 A. In each case, the more buried metal ion, referred to as the alpha-metal, is surrounded by ligands in a trigonal bipyramidal ligation sphere. For the more solvent-exposed or beta-metal ion, however, the observed coordination spheres are either octahedral (in the Cd(2+)/Cd(2+)-, Mn(2+)/Mn(2+)-, and the mixed Zn(2+)/Cd(2+)-species) or trigonal bipyramidal (in the Zn(2+)/Zn(2+)-protein). By measuring the anomalous X-ray data from crystals of the Zn(2+)/Cd(2+)-species, it has been possible to determine that the alpha-metal ion is zinc and the beta-site is occupied by cadmium.  相似文献   

14.
15.
Magnesium is essential for the catalysis reaction of Escherichia coli primase, the enzyme synthesizing primer RNA chains for initiation of DNA replication. To map the Mg(2+) binding site in the catalytic center of primase, we have employed the iron cleavage method in which the native bound Mg(2+) ions were replaced with Fe(2+) ions and the protein was then cleaved in the vicinity of the metal binding site by adding DTT which generated free hydroxyl radicals from the bound iron. Three Fe(2+) cleavages were generated at sites designated I, II, and III. Adding Mg(2+) or Mn(2+) ions to the reaction strongly inhibited Fe(2+) cleavage; however, adding Ca(2+) or Ba(2+) ions had much less effect. Mapping by chemical cleavage and subsequent site-directed mutagensis demonstrated that three acidic residues, Asp345 and Asp347 of a conserved DPD sequence and Asp269 of a conserved EGYMD sequence, were the amino acid residues that chelated Mg(2+) ions in the catalytic center of primase. Cleavage data suggested that binding to D345 is significantly stronger than to D347 and somewhat stronger than to D269.  相似文献   

16.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

17.
18.
ManR of Anabaena sp. PCC 7120 is a manganese response regulator. Two ManR molecules bind to the specific DNA sequences at the same time, which was demonstrated by our previous results. From size exclusion chromatography, ManR exits as monomer in solution. Therefore, cooperative interactions of ManR–ManR play a role in DNA binding of the ManR, suggesting that ManR molecules bind co-operatively to DNA. When serial deletions of N-terminal of the ManR were also carried out the mutant proteins, ManRC111, ManRC130 and ManRC158, had completely lost the in DNA binding activity. Mutants ManRC 196, ManRC206, ManRC221 and ManRC230, however, could specifically bind to DNA, indicating that the amino acid residues between Val16 and Ile78 of the N-terminal of ManR are necessary for the DNA binding activity of C-terminal domain.Revisions requested 20 Ocotober 2004/15 November 2004; Revisions received 10 November/13 December 2004  相似文献   

19.
The interaction between the native DNA macromolecules and Ca2+, Mn2+, Cu2+ ions in solutions of low ionic strength (10(-3) M Na+) is studied using the methods of differential UV spectroscopy and CD spectroscopy. It is shown that the transition metal ions Mn2+ exercise binding to the nitrogen bases of DNA at concentrations approximately 5 x 10(-6) M and form chelates with guanine of N7-Me(2+)-O6 type. Only at high concentrations in solution (5 x 10(-3) M) do Ca2+ ions interact with the nitrogen bases of native DNA. In the process of binding to Ca2+ and Mn2+ the DNA conformation experiences some changes under which the secondary structure of the biopolymer is within the B-form family. The DNA transition to the new conformation is revealed by its binding to Cu2+ ions.  相似文献   

20.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号