首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A YAC contig map of Arabidopsis thaliana chromosome 3   总被引:1,自引:0,他引:1  
We have constructed a YAC contig map of Arabidopsis thaliana chromosome 3. From an estimated total size of 25 Mb, about 21 Mb were covered by 148 clones arranged into nine YAC contigs, which represented most of the low-copy regions of the chromosome. YAC clones were anchored with 259 molecular markers, including 111 for which linkage information was previously available. Most of the genetic map was included in the YAC coverage, and more than 60% of the genetic markers from the reference recombinant inbred line map were anchored, giving a high level of integration between the genetic and physical maps. The submetacentric structure of the chromosome was confirmed by physical data; 3R (the top arm of the linkage map) was about 12 Mb, and 3L (the bottom arm of the linkage map) was about 9 Mb. This YAC physical map will aid in chromosome walking experiments and provide a framework for large-scale DNA sequencing of chromosome 3.  相似文献   

2.
CD28 and CTLA4 are structurally homologous single-V-domain molecules of the Ig superfamily, the genes of which comap on the same chromosomal bands in mouse and man. Using polymerase chain reactions, we isolated six yeast artificial chromosome (YAC) clones positive for CTLA4 and/or CD28 from a human-DNA-containing YAC library. Two double-positive clones, 365 and 550 kb long, respectively, were further studied. Detailed restriction enzyme maps showed that one of these YACs was nested in the other, that they both bore the same CD28- and CTLA4-hybridizing fragments, that similar fragments were seen in genomic DNA, and that the distance between the CD28 and CTLA4 genes was at most 150 kb and at least 25 kb. A CpG island was found between these genes. These results provide a high-resolution estimate of the physical distance between the CD28 and CTLA4 genes and constitute a basis for the isolation of neighboring structures.  相似文献   

3.
Effective procedures have been developed for constructing NotI linking libraries starting from chromosome-specific genomic libraries. Fifteen different single copy and two rDNA NotI linking clones from human chromosome 21 were identified in two libraries. Their chromosomal origin was confirmed, and regional location established using hybrid cell panels. Hybridization experiments with these probes revealed pairs of genomic NotI fragments, each ranging in size from less than 0.05 to 4.0 Mb. Many fragments displayed cell type variation. The total size of the NotI fragments detected in a human fibroblast cell line (GM6167) and mouse hybrid cell containing chromosome 21 as its only human component (WAV17) were approximately 32 and 34 Mb, respectively. If these fragments were all non-overlapping, this would correspond to about 70% of the 50-Mb content estimated for the whole chromosome. The linking clones will be enormously useful in the subsequent construction of a NotI restriction map of this chromosome. Characterization of these clones indicates the presence of numerous additional sites for other enzymes that recognize sequences containing CpG. Thus most NotI linking clones appear to derive from CpG islands and probably identify the 5' end of genes.  相似文献   

4.
We have constructed a high-resolution cytogenetic map with 168 DNA markers, including 90 RFLP markers for human chromosome 11. The cosmid clones were mapped by fluorescence in situ suppression hybridization, in which discrete fluorescent signals can be detected directly on prometaphase R-banded chromosomes. Although these cosmid clones were distributed throughout the chromosome, they had some tendency to localize in the regions of R-positive band, such as 11p15, 11p11.2, 11q13, 11q23, and 11q25. Since these regions of chromosome 11 are considered to contain genes responsible for certain genetic diseases, cancer breakpoints involved in chromosome rearrangements, and tumor-suppressor genes, this high-resolution cytogenetic map will contribute to the molecular characterization of such genes. This map will also provide many landmarks essential for construction of the complete physical map with contigs of cosmid and YAC clones.  相似文献   

5.
Sequence tagged sites (STSs) have been proposed as a "common language" for comparing physical and genetic maps of the human genome produced by a variety of techniques. We have produced 44 STSs from 38 mapped loci on human chromosome 21. The STSs represent most of the loci designated as genetic reference or ordered physical framework markers, along with a number of others chosen to span all regions of 21q. Of the STSs, 12 are from gene segments, including 4 from exons of the APP gene encoding the amyloid beta protein precursor, and 32 mark anonymous DNA loci. These STSs make each of the corresponding loci readily accessible to the research community without the need for exchange of clones. These sites also represent multiple start points for the isolation of YAC clones that should permit overlapping the entire chromosome 21 long arm as cloned DNA.  相似文献   

6.
Vascular anomalies are congenital lesions that usually occur sporadically, but can be inherited. Previously, we have described that venous malformations, localized bluish-purple skin lesions, are caused by an activating mutation in the TIE2/TEK receptor. Moreover, we mapped another locus to chromosome 1p21-p22, for venous malformations with glomus cells (VM-GLOM). Here we report a physical map, based on 18 overlapping YAC clones, spanning this 5-Mb VMGLOM locus, from marker GATA63C06 to D1S2664. In addition, we report a sequence-ready PAC map of 46 clones covering 1.48 Mb within the YAC contig, a region to which we have restricted VMGLOM. We describe 21 new STSs and nine novel CA repeats, seven of which are polymorphic. These data will enable positional cloning of genes for diseases mapped to this locus, including the VMGLOM gene, likely a currently unknown regulator of vasculogenesis and/or angiogenesis.  相似文献   

7.
In order to construct a human chromosome 4-specific YAC library, we have utilized pYAC4 and a mouse/human hybrid cell line HA(4)A in which the only human chromosome present is chromosome 4. From this cell line, approximately 8Mb of chromosome 4 have been cloned. The library includes 65 human-specific clones that range in size from 30kb to 290kb, the average size being 108kb. In order to optimize the manipulation of YAC libraries, we have begun to investigate the stability of YACs containing human DNA in yeast cells; these studies will also determine if there are intrinsic differences in the properties of chromosomes containing higher eukaryotic DNAs. We are examining two kinds of stability: 1] mitotic stability, the ability of the YAC to replicate and segregate properly during mitosis, and 2] structural stability, the tendency of the YAC to rearrange. We have found that the majority of YACs examined are one to two orders of magnitude less stable than authentic yeast chromosomes. Interestingly, the largest YAC analyzed displayed a loss rate typical for natural yeast chromosomes. Our results also suggest that increasing the length of an artificial chromosome improves its mitotic stability. One YAC that showed a very high frequency of rearrangement by mitotic recombination proved to be a mouse/human chimera. In contrast to studies using total human DNA, the frequency of chimeras (i.e., mouse/human) in the YAC pool appeared to be low.  相似文献   

8.
In order to generate a physical map of Arabidopsis thaliana chromosome 5, 142 molecular markers mapping to chromosome 5 have been used in colony hybridization experiments with four Arabidopsis, ecotype Columbia, yeast artificial chromosome (YAC) libraries. This resulted in 634 YAC clones being anchored on chromosome 5. Southern blot analysis confirmed their positioning and provided data, which along with knowledge of the sizes of all the YAC clones, enabled the clones to be arranged into 31 contigs. Genetic mapping of markers located within 29 of these contigs on the Landsberg erecta/Columbia recombinant inbred lines allowed positioning of the contigs along the chromosome. A high proportion of the YAC clones were found to contain chimaeric inserts. The availability of this YAC contig map will accelerate chromosome-walking experiments, provide substrates for large-scale genomic sequencing projects and facilitate the mapping of new probes to this chromosome.  相似文献   

9.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

10.
Thirty-four unique-sequence microclones were isolated from a previously described microdissection library of human chromosome 21 and were regionally mapped using a cell hybrid mapping panel which consists of six cell hybrids and divides chromosome 21 into eight regions. The mapping results showed that the microclones were unevenly distributed along chromosome 21, with the majority of microclones located in the distal half portion of the long arm, between 21q21.3 and 21qter. The number of unique-sequence clones began to decrease significantly from 21q21.2 to centromere and extending to the short arm. This finding is consistent with those reported in other chromosome 21 libraries. Thus, it may be inferred that the proximal portion of the long arm of chromosome 21 contains higher proportions of repetitive sequences, rather than unique sequences or genes. The microclones were also characterized for insert size and were used to identify the corresponding genomic fragments generated by HindIII. In addition, we demonstrated that the microclones with short inserts can be efficiently used to identify YAC (yeast artificial chromosome) clones with large inserts, for increased genomic coverage for high-resolution physical mapping. We also used 200 unique-sequence microclones to screen a human liver cDNA library and identified two cDNA clones which were regionally assigned to the 21q21.3-q22.1 region. Thus, generation of unique-sequence microclones from chromosome 21 appears to be useful to isolate and regionally map many cDNA clones, among which will be candidate genes for important diseases on chromosome 21, including Down syndrome, Alzheimer disease, amyotrophic lateral sclerosis, and one form of epilepsy.  相似文献   

11.
"Chimeric" yeast artificial chromosomes (YACs) are clones containing two or more noncontiguous segments of DNA and represent the most common artifact found in total genomic YAC libraries currently used for large-scale genome mapping. These YACs create spurious mapping information that complicates the construction of YAC contigs and leads to erroneous maps during chromosome walks. The presence of these artifactual clones necessitates laborious and time-consuming characterization of each isolated YAC clone, either by comparison of the physical map of the YAC with the corresponding source genomic DNA, or by demonstrating discrepant chromosomal origins for the two ends of the YAC by hybridization or polymerase chain reaction (PCR). Here, we describe a rapid and sensitive method for the assessment of YAC colinearity by fluorescence in situ suppression hybridization (FISSH) by utilizing fluorescein-12-dUTP for labeling YAC clones. We have analyzed 51 YACs and found that 43% (22 out of 51) are chimeric and significantly larger (302 kb) than colinear ones (228 kb). One of the 51 YAC clones (2%) examined contains portions of three chromosomes and 2 (4%) seem to map to a chromosome different than that of the identifying STS. FISSH analysis offers a straightforward visualization of the entire YAC insert on the chromosomes and can be used to examine many YACs simultaneously in few days.  相似文献   

12.
Using yeast artificial chromosomes, we have generated a high-resolution physical map for 2.7 Mb of human chromosomal region 3q27. The YAC clones group into three contigs, one of which has also been linked to the CEPH YAC contig map of human chromosome 3. Fluorescencein situhybridization has been used to order the contigs on the chromosome and to estimate the distance between them. Expressed sequence tags for five genes, including three members of the cystatin gene family and a gene thought to be involved in B-cell non-Hodgkin lymphoma, have been placed within the YAC contigs, and 12 putative CpG islands have been identified. These YACs provide a useful resource to complete the physical mapping of 3q27 and to begin identification and characterization of further genes that are located there.  相似文献   

13.
We have initiated work towards the construction of YAC clone contigs across a repeat sequence island region on the mouse X Chromosome (Chr). The repeat sequence island region—the 141 island—located at band A3 contains 50 copies of a localized long complex repeat unit (LCRU). We have isolated 87 YAC clones from the 141 island and have used a dual faceted approach towards the construction of contigs across the repeat sequence island. First, we have identified YAC clones originating from the same region of the island by the identification of commonly held LCRU restriction site variants. Second, we have constructed rare cutter restriction maps of each YAC clone. Taken together, we have been able to assemble one large contig of 2.8 Mb and a number of smaller contigs. In total, contigs covering 5Mb of the island region have been identified. The island region would appear to represent a major component of the A3 Giemsa dark band on the mouse X Chr. Received: 1 September 1995 / Accepted: 11 December 1995  相似文献   

14.
We have previously demonstrated the capability of the Fosmid vector based on Escherichia coli F-factor replicon to stably propagate cosmid-sized human genomic DNA fragments. Using the Fosmid vector, we have constructed and arrayed a 10 × human chromosome 22-specific library, partly by picking human positive clones from a total Fosmid library constructed using DNA from human-hamster hybrid cell line containing human chromosome 22, and partly by using flow-sorted chromosomal DNA. The clones and physical contig maps of the clones in the library will serve as a valuable resource for detailed analysis of the chromosome by providing reliable materials for high resolution mapping and sequencing. In order to efficiently built physical maps for the chromosomal regions of interest spanning several hundred kilobases to a megabase, it is necessary to rapidly identify subsets of the Fosmid clones from the library that cover such regions. In this report, we describe a method of using random amplification products derived from YAC clones to rapidly identify a subset of Fosmid clones that cover a specific genomic subregion.  相似文献   

15.
16.
We report a protocol for cloning large DNA fragments in yeast artificial chromosomes (YAC). A partial library has been constructed from a somatic hybrid containing chromosome 21 as the single source of human DNA. About 4.0 Mb of human DNA was recovered in 17 YAC clones. Three clones were analyzed by in situ hybridization and mapped on chromosome 21. One clone hybridized with the chromosome 21 centromeric region and may provide new insight both on the molecular structure of centromere and on the localization of Alzheimer disease gene.  相似文献   

17.
A physical map including four pseudogenes and 10 gene fragments and spanning 500 kb in the juxta-centromeric region of the long arm of human chromosome 21 is presented. cDNA fragments isolated from a selected cDNA library were characterized and mapped to the 831B6 YAC and to two BAC contigs that cover 250 kb of the region. An 85 kb genomic sequence located in the proximal region of the map was analyzed for putative exons. Four pseudogenes were found, including psiIGSF3, psiEIF3, psiGCT-rel whose functional copies map to chromosome 1p13, chromosome 2 and chromosome 22q11, respectively. The TTLL1 pseudogene corresponds to a new gene whose functional copy maps to chromosome 22q13. Ten gene fragments represent novel sequences that have related sequences on different human chromosomes and show 97-100% nucleotide identity to chromosome 21. These may correspond to pseudogenes on chromosome 21 and to functional genes in other chromosomes. The 85 kb genomic sequence was analyzed also for GC content, CpG islands, and repetitive sequence distribution. A GC-poor L isochore spanning 40 kb from satellite 1 was observed in the most centromeric region, next to a GC-rich H isochore that is a candidate region for the presence of functional genes. The pericentric duplication of a 7.8 kb region that is derived from the 22q13 chromosome band is described. We showed that the juxta-centromeric region of human chromosome 21 is enriched for retrotransposed pseudogenes and gene fragments transferred by interchromosome duplications, but we do not rule out the possibility that the region harbors functional genes also.  相似文献   

18.
The zinc finger gene GLI3 has been shown to be involved in the embryonal development of the limbs and skull. Mutations in GLI3 lead to the development of the human Greig cephalopolysyndactyly syndrome (GCPS) and the mouse mutations extra toes (Xt) and anterior digit deformity (add). The GCPS locus on human chromosome 7p13 has recently been isolated in a yeast artifical chromosome (YAC) contig. Here, we describe the establishment of a cosmid contig that was derived from two of the YAC clones, that spans 550 kb of human DNA, and that includes the GLI3 gene. In this contig, three GCPS translocation breakpoints have been mapped to distinct EcoRI fragments in the 3 half of the gene. In addition, exon-carrying fragments have been identified and the size of the GLI3 gene could be determined as at least 280 kb. The gene is flanked by a CpG island that lies on the 5 side and that is in close proximity to the first exon detected by the cloned GLI3 cDNA. Further upstream, five segments were found that have been conserved between man and mouse. In the mouse, this region has been characterized as the transgene integration site resulting in the add phenotype. Both the CpG island and the conserved regions are probable candidates for a search for GLI3 promoter and control elements.  相似文献   

19.
CpG islands of the X chromosome are gene associated.   总被引:6,自引:0,他引:6       下载免费PDF全文
Unmethylated CpG rich islands are a feature of vertebrate DNA: they are associated with housekeeping and many tissue specific genes. CpG islands on the active X chromosome of mammals are also unmethylated. However, islands on the inactive X chromosome are heavily methylated. We have identified a CpG island in the 5' region of the G6PD gene, and two islands forty Kb 3' from the G6PD gene, on the human X chromosome. Expression of the G6PD gene is associated with concordant demethylation of all three CpG islands. We have shown that one of the two islands is in the promoter region of a housekeeping gene, GdX. In this paper we show that the second CpG island is also associated with a gene, P3. The P3 gene has no homology to previously described genes. It is a single copy, 4 kb gene, conserved in evolution, and it has the features of a housekeeping two genes is within the CpG island and that sequences in the islands have promoter function.  相似文献   

20.
A 265-kb yeast artificial chromosome containing sequences for human monoamine oxidase A and B (MAO-A and MAO-B) genes has been characterized. These two genes are localized within a region of about 240 kb and are arranged in a tail-to-tail configuration, with the 3' coding sequences separated by about 50 kb. A region about 2.5 Mb around the MAO loci was mapped by pulsed-field gel electrophoresis (PFGE). Comparisons between the restriction maps derived from the YAC and the long-range map derived from genomic digestions were in general agreement. The important features identified include a CpG island at the 5' end of the MAO-A and MAO-B genes, respectively. The combined information supports the order of markers within this region to be DXS77-DXS7-MAOA-MAOB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号